The magnetic force on a current-carrying wire due to a magnetic field is given by

where
I is the current
L the wire length
B the magnetic field strength
In our problem, L=1.0 m,

and

, so we can re-arrange the formula to find the current in the wire:
The velocity of tennis racket after collision is 14.96m/s
<u>Explanation:</u>
Given-
Mass, m = 0.311kg
u1 = 30.3m/s
m2 = 0.057kg
u2 = 19.2m/s
Since m2 is moving in opposite direction, u2 = -19.2m/s
Velocity of m1 after collision = ?
Let the velocity of m1 after collision be v
After collision the momentum is conserved.
Therefore,
m1u1 - m2u2 = m1v1 + m2v2


Therefore, the velocity of tennis racket after collision is 14.96m/s
<h2>Answer: Francium
</h2>
Let's start by explaining that electronegativity is a term coined by Linus Pauling and is determined by the <em>ability of an atom of a certain element to attract electrons when chemically combined with another atom.
</em>
So, the more electronegative an element is, the more electrons it will attract.
It should be noted that this value can not be measured directly by experiments, but it can be determined indirectly by means of calculations from other atomic or molecular properties of the element. That is why the scale created by Pauling is an arbitrary scale, where the maximum value of electronegativity is 4, assigned to Fluorine (F) and the <u>lowest is 0.7, assigned to Francium (Fr).</u>