Answer:
4.2 J
Explanation:
Specific heat capacity: This is defined as the amount of a heat required to rise a unit mass of a substance through a temperature of 1 K
From specific heat capacity,
Q = cmΔt.............................. Equation 1
Where Q = amount of energy absorbed or lost, c = specific heat capacity of water, m = mass of water, Δt = Temperature rise.
Given: m = 1 g = 0.001 kg, Δt = 1 °C
Constant : c = 4200 J/kg.°C
Substitute into equation 1
Q = 0.001×4200(1)
Q = 4.2 J.
Hence the energy absorbed or lost = 4.2 J
Answer:
The value is
Explanation:
From the question we are told that
The rotational inertia about one end is 
The location of the axis of rotation considered is 
Generally the mass of the portion of the rod from the axis of rotation considered to the end of the rod is 
Generally the length of the rod from the its beginning to the axis of rotation consider is

Generally the mass of the portion of the rod from the its beginning to the axis of rotation consider is

Generally the rotational inertia about the axis of rotation consider for the first portion of the rod is


Generally the rotational inertia about the axis of rotation consider for the second portion of the rod is

=> 
=> 
Generally by the principle of superposition that rotational inertia of the rod at the considered axis of rotation is

=> ![I = \frac{1}{3} ML ^2 [0.6 * (0.6)^2 + 0.4 * (0.4)^2 ]](https://tex.z-dn.net/?f=I%20%3D%20%20%5Cfrac%7B1%7D%7B3%7D%20ML%20%5E2%20%20%5B0.6%20%2A%20%280.6%29%5E2%20%2B%200.4%20%2A%20%280.4%29%5E2%20%5D)
=>
Ice melts due to the chemical properties of water. There are more hydrogen bonds between the molecules of ice than in water.
Water boils when the thermal energy in the water, which is a type of kinetic energy which causes the water molecules to move around, exceeds the strength of the hydrogen bonds between the other molecules.