Answer:
Explanation:Due to the mental pressure,
Due to peer pressure,
Lack of love and affection from the family members.
Influence from the T.V advertisement.
Answer:
Mixing colored lights & mixing colored paints. The primary colors of light are also known as the additive colors, because, when you add these three colors of light (red, green and blue) your brain perceives white light. The primary colors of paints, however, are known as subtractive colors.
Explanation:
<em>Your </em><em>well-wisher</em>
To answer your question I will use dimensional analysis, which is used by cancelling out the units. I will also use the balanced equation provided as a conversion factor.
A) First start out with the 0.300 mol of C6H12O6...
0.300 mol C6H12O6 * (2 mol CO2 / 1 mol C6H12O6) = 0.600 mol CO2
*The significant figures (sig figs) at still three, the 2 is a conversion counting number and does not count*
B) First change 2.00 g of C2H5OH to moles of C2H5OH...
The molecular mass of C2H5OH is...
2(12.01 g/mol) + 5(1.008 g/mol) + 16.00 g/mol + 1.008 g/mol = 46.07 g/mol
This can be used as a conversion factor to change grams to moles.
2.00 g C2H5OH * (1 mol C2H5OH / 46.07 g C2H5OH) = 0.0434 mol C2H5OH
Second, you can change the moles of C2H5OH to moles of C6H12O6..
0.0434 mol C2H5OH * (1 mol C6H12O6 / 2 mol C6H12O6) = 0.0217 mol C6H12O6
Third, change moles of C6H12O6 to grams...
MM = 6(12.01 g/mol) + 12(1.008 g/mol) + 6(16.00 g/mol) = 180.16 g/mol
0.0217 mol C6H12O6 * (180.16 g C6H12O6 / 1 mol C6H12O6) = 3.91 g C6H12O6
C) Now I am going to put it all into one long dimensional analysis problem.
MM of CO2 = 44.01 g/mol
MM of C2H5OH = 46.07 g/mol
2.00 g C2H5OH * (1 mol C2H5OH / 46.07 g C2H5OH) * (2 mol CO2 / 2 mol C2H5OH) * (44.01 g CO2 / 1 mol CO2) = 1.91 g CO2
I hope this helped and I am sorry that I talked to much, I just didn't want to miss anything!
<h2>♨ANSWER♥</h2>
In coordination chemistry,
A coordinate covalent bond also known as a <em>dative bond, dipolar bond, or coordinate bond</em> is a kind of two-center, two-electron covalent bond in which the two electrons derive from the same atom. The bonding of metal ions to ligands involves this kind of interaction.
<u>☆</u><u>.</u><u>.</u><u>.</u><u>hope this helps</u><u>.</u><u>.</u><u>.</u><u>☆</u>
_♡_<em>mashi</em>_♡_