The expected final temperature of the block, given that 586 J of heat were added to it is 55.5 °C
<h3>How to determine the final temeprature</h3>
We'll begin by obtaining the change in the temperature of the block. This can be obtained as follow:
- Specific heat capacity of block (C) = 0.240 J/gºC
- Heat added (Q) = 586 J
- Mass of block (M) = 80.0 g
- Change in temperature (ΔT) =?
Q = MCΔT
Divide both sides by MC
ΔT = Q / MC
ΔT = 586 / (80.0 × 0.240)
ΔT = 586 / 19.2
ΔT = 30.5 °C
Finally, we shall determine the final temperature of the block. This can be obtained as follow:
- Initial temperature (T₁) = 25 °C
- Change in temperature (ΔT) = 30.5 °C
- Final temperature (T₂) = ?
ΔT = T₂ – T₁
30.5 = T₂ – 25
Collect like terms
T₂ = 30.5 + 25
T₂ = 55.5 °C
Thus, from the calculation made above, we can conclude that the final temperature is 55.5 °C
Learn more about heat transfer:
brainly.com/question/14383794
#SPJ1
There are four types of chemical bonds essential for life to exist: Ionic Bonds, Covalent Bonds, Hydrogen Bonds, and van der Waals interactions. We need all of these different kinds of bonds to play various roles in biochemical interactions. These bonds vary in their strengths.
To play a variety of roles in biochemical interactions, we require all of these diverse sorts of linkages. The tensile strength of these linkages varies. In chemistry, we consider the range of strengths between ionic and covalent bonds to be overlapping. This indicates that in water, ionic bonds usually dissociate. As a result, we shall consider these bonds from strongest to weakest in the following order:
Covalent is followed by ionic, hydrogen, and van der Waals.
To know more about 4 different types of bonds, visit;
brainly.com/question/17401243
#SPJ4
Answer:
i think it is true
Explanation:
if it correct plz plz mark as brainliest
thank you
19NBoli
Answer:
Option A= copper
Explanation:
According to specific heat capacity of substances, copper will reach to the our body temperature first.
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m × c × ΔT
specific heat capacity of copper = 0.385 J/g. °C
specific heat capacity of aluminium = 0.902 J/g. °C
so copper will absorb the heat very quickly and raise the temperature in very less time as compare to aluminium.