The number of moles of silver oxide (I) needed to produce 4 moles of silver is 2 moles
<h3>Stoichiometry </h3>
From the question, we are to determine the number of moles of silver oxide (I) needed to produce 4 moles of silver
First, we will write the balaced chemical equation for the decomposition of silver oxide (I)
2Ag₂O(s) → 4Ag(s) + O₂(g)
This means, 2 moles of silver oxide (I) [Ag₂O] decomposes to give 4 moles of <u>silver </u>and 1 mole of oxygen gas.
From the <em>balanced chemical equation</em>, it is easy to deduce the number of moles of silver oxide (I) that would give 4 moles of silver.
Hence, the number of moles of silver oxide (I) needed to produce 4 moles of silver is 2 moles
Learn more on Stoichiometry here: brainly.com/question/18834543
Au is the symbol for gold. It comes from Latin word for gold, which is Aurunum. Its atomic number is 79.
Sr is the limiting reactant.
Given the reaction equation;
2Sr + O2 (g) → 2SrO
2 moles of Sr reacts with 1 mole of O2
2 moles Sr will react with x mole of O2
x = 2 ×1/2
x = 1 mole of O2
Since we have more O2 than required, it is the reactant in excess, hence Sr is the limiting reactant.
Learn more: brainly.com/question/14225536
Answer is: adding NaCl will lower the freezing point of a solution.
A solution (in this example solution of sodium chloride) freezes at a lower temperature than does the pure solvent (deionized water).
The higher the solute concentration (sodium chloride), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
Dissociation of sodium chloride in water: NaCl(aq) → Na⁺(aq) + Cl⁻(aq).