Answer:
The answer is: +7
Explanation:
Oxidation state or oxidation number of an element is the hypothetical charge on an element that forms completely ionic bonds. The oxidation number represents the number of electrons lost or gained by that element.
Perchlorate ion is a molecule with a chemical formula: ClO₄⁻
The oxidation state of oxygen in ClO₄⁻ = -2,
the total charge on the ClO₄⁻ molecule = -1,
let the oxidation state of chlorine be x
<u><em>As the sum of oxidation states of all elements in a molecule is equal to the total charge on the molecule.</em></u>
⇒ oxidation state of chlorine + oxidation state of oxygen × 4 = total charge on the molecule
⇒ x + (-2) × 4 = -1
⇒ x + (-8) = -1
⇒ x = -1 + 8 = +7
⇒<u> </u><u>x = +7</u>
<u>Therefore, the oxidation state of chlorine in the perchlorate ion (ClO₄⁻): x = +7</u>
As you proceed down the periodic table, the metallic character becomes stronger. This is because as the atomic radius increases, there is less attraction between the nucleus and the valence electrons due to the greater distance between them, making electrons simpler to shed.
Answer:
During a solar flare, the built up magnetic energy n the solar atmosphere is released at once. If a strong solar flare hits the earth, it is most possible that it will destroy the electronics. It is not expected to effect any human beings unless they are travelling towards the outer space are living at higher altitudes.
It can lead to skin can in case of extreme exposures.
I hope the answer is helpful.
Thanks for answering.
Answer:
6 Cl0 + 6 e- → 6 Cl-I (reduction)
2 Fe0 - 6 e- → 2 FeIII (oxidation)
Answer : The specific heat of the substance is 0.0936 J/g °C
Explanation :
The amount of heat Q can be calculated using following formula.

Where Q is the amount of heat required = 300 J
m is the mass of the substance = 267 g
ΔT is the change in temperature = 12°C
C is the specific heat of the substance.
We want to solve for C, so the equation for Q is modified as follows.

Let us plug in the values in above equation.


C = 0.0936 J/g °C
The specific heat of the substance is 0.0936 J/g°C