To insert a thermometer into an adapter, use <u>mineral oil</u> to prepare the thermometer. Then, hold the thermometer <u>close to</u> the adapter and<u> slowly turn</u> the thermometer into the adapter.
The term "temperature" refers to a measurement of how cold or hot an actual physical object is. It is measured with a thermometer, which gives readings in Celsius, Kelvin, and Fahrenheit (°C, K, and °F).
The average kinetic energy of the particles in a given substance is often measured by temperature. A thermometer is a tool used to gauge a substance's or a body's temperature (degree of hotness or coolness). It is a bulb-shaped piece of thin glass that usually contains either coloured alcohol or mercury.
In order to get readings throughout the distillation process, a thermometer adapter is used with a temperature probe. Use mineral oil to prepare or make the thermometer suitable before inserting it into the adapter. After that, slowly insert the thermometer into the adaptor while holding it close to it.
Learn more about thermometer:
brainly.com/question/2339046
#SPJ4
Answer:
Three possible blood type alleles are Iᴬ, Iᴮ and i
Explanation:
Iᴬ, Iᴮ and i are three possible blood type alleles.
Iᴬ and Iᴮ are known as co-dominant, and The i allele is recessive.
Thus, Three possible blood type alleles are Iᴬ, Iᴮ and i
<u>-TheUnknownScientist</u>
Answer: Option (d) is the correct answer.
Explanation:
Steps involved for the given reaction will be as follows.
Step 1:
(fast)
Rate expression for step 1 is as follows.
Rate = k ![[NO]^{2}](https://tex.z-dn.net/?f=%5BNO%5D%5E%7B2%7D)
Step 2: 
This step 2 is a slow step. Hence, it is a rate determining step.
Step 3.
(fast)
Here,
is intermediate in nature.
All the steps are bimolecular and it is a second order reaction. Also, there is no catalyst present in this reaction.
Thus, we can conclude that the statement step 1 is the rate determining step, concerning this mechanism is not directly supported by the information provided.
Answer:
5.231 L.
Explanation:
- Molarity is the no. of moles of solute per 1.0 L of the solution.
<em>M = (no. of moles of KCl)/(Volume of the solution (L))</em>
<em></em>
M = 6.5 M.
no. of moles of solute = 34.0 mol,
Volume of the solution = ??? L.
∴ (6.5 M) = (34.0 mol)/(Volume of the solution (L))
∴ (Volume of the solution (L) = (34.0 mol)/(6.5 M) = 5.231 L.
is the Calcium
because the calcium in group two which group two has 2 electron and also calcium and Potassium 4s sub level group potassium has 1 electron. :)