The 18o-labeled methanol (CH3O*H) will appear in the products side at position b.
<h3>
Position of 18o-labeled methanol in the products</h3>
The 18O label will appear at position b in the product as indicated in the image.
This methoxy group in the product formed in position b comes from the 18O-labeled methanol (CH3OH).
While the oxygens at positions a and c in the product come from the unlabeled hemiacetal.
Thus, the 18o-labeled methanol (CH3O*H) will appear in the products side at position b.
Learn more about methanol here: brainly.com/question/17048792
#SPJ11
Answer:
22 kph
Explanation:
You simply divide the distance and the time. 66/3 = 22.
Mass of PH3= 6.086 g
<h3>Further explanation</h3>
Given
6.0 L of H2
Required
mass of PH3
Solution
Reaction
P4 + 6H2 → 4PH3
Assumed at STP ( 1 mol gas=22.4 L)
Mol of H2 for 6 L :
= 6 : 22.4 L
= 0.268
From the equation, mol PH3 :
= 4/6 x moles H2
= 4/6 x 0.268
= 0.179
Mass PH3 :
= 0.179 x 33,99758 g/mol
= 6.086 g
Answer:
Option A
Explanation:
An intensive property is a bulk property, meaning that it is a local physical property of a system that does not depend on the system size or the amount of material in the system. Examples of intensive properties include temperature, T; refractive index, n; density, ρ; and hardness of an object,specific heat, η.
Physical properties can be observed or measured without changing the composition of matter. Physical properties are used to observe and describe matter. Physical properties include: appearance, texture, color, odor, melting point, boiling point, density, solubility, polarity, specific heat and many others.
You can't usually just use a single spectrum line to confirm the identity of an element because there are cases that the emission line id not clearly defined. When the emission line is very weak compared to surrounding noise, in which case the more datapoints you have to build up confidence for the existence of a particular emission spectra, the better.