Answer:
The beam used is a negatively charged electron beam with a velocity of
v = E / B
Explanation:
After reading this long statement we can extract the data to work on the problem.
* They indicate that when the beam passes through the plates it deviates towards the positive plate, so the beam must be negative electrons.
* Now indicates that the electric field and the magnetic field are contracted and that the beam passes without deviating, so the electric and magnetic forces must be balanced

q E = qv B
v = E / B
this configuration is called speed selector
They ask us what type of beam was used.
The beam used is a negatively charged electron beam with a velocity of v = E / B
Hi there!

We know that:

U = Potential Energy (J)
K = Kinetic Energy (J)
E = Total Energy (J)
At 10m, the total amount of energy is equivalent to:
U + K = 50 + 50 = 100 J
To find the highest point the object can travel, K = 0 J and U is at a maximum of 100 J, so:
100J = mgh
We know at 10m U = 50J, so we can solve for mass. Let g = 10 m/s².
50J = 10(10)m
m = 1/2 kg
Now, solve for height given that E = 100 J:
100J = 1/2(10)h
100J = 5h
<u>h = 20 meters</u>
Ok well I know measure of long leg is 30 degrees and short leg is 60 degrees
Answer: λ2= 2.34 * 10^-6 C/m
Explanation: In order to calculate the value of the linear charge density of the insulating shell we have to multiply ρ* Volume of the hollow cylinder, so
Volume of cylinder:2*π*b*L *(b-a) where (b-a) is the thickness, then
λ2=Q/L = 634 *10^-6 C/m^3* 2*π*0.042 m*(0.042-0.26)== 2.34 μ C/m
That type of bending is called "diffraction" of waves.