Answer:
The officer's unit detects this 135-mile-per-hour speed and should subtract the patrol car's 70-mile -per-hour ground speed to get your true speed of 65 miles per hour. Instead, the officer's ground-speed beam fixes on the truck ahead and measures a false 50-mile-per-hour ground speed.
Explanation:
A speedometer or speed meter is a gauge that measures and displays the instantaneous speed of a vehicle. Now universally fitted to motor vehicles, they started to be available as options in the early 20th century, and as standard equipment from about 1910 onwards.
Answer:
The bonds can shift because valence electrons are held loosely and more freely
Explanation:
Please give brainliest if you can,have a good day<3 :)
Answer:
The length is 
Explanation:
From the question we are told that
The frequencies of the two successive harmonics are
, 
The speed of sound in the air is 
Generally the frequency of a given harmonic is mathematically represented as

Here n defines the position of the harmonics
Now since the position of both harmonic is not know but we know that they successive then we can represented them mathematically as

and

So

=> 
=> 
Answer:
Explanation:
electric field at the location of electron
= 9 x 10⁹ x 7.2 / .03²
= 72 x 10¹² N/C
force on electron = electric field x charge on electron
= 72 x 10¹² x 1.6 x 10⁻¹⁹
= 115.2 x 10⁻⁷ N .
C )
work done = charge on electron x potential difference at two points
potential at .03 m
= 9 x 10⁹ x 7.2 / .03
= 2.16 x 10¹² V
potential at .001 m
= 9 x 10⁹ x 7.2 / .001
= 64.8 x 10¹² V
potential difference = (64.8 - 2.16 )x 10¹² V
= 62.64 x 10¹² V .
work done = 62.64 x 10¹² x 1.6 x 10⁻¹⁹
= 100.224 x 10⁻⁷ J .
D )
There will be no change in the magnitude of force on positron except that the direction of force will be reversed . In case of electron , there will be repulsion and in case of positron , there will be attraction .
Work done in case of electron will be positive and work done in case of positron will be negative .
electric field due to charge will be same in both the cases .
<span>The answer is a heterogeneous mixture. Mixtures can be homogeneous and heterogeneous. If a solid and a liquid of a mixture cannot be separated and the difference between them is not visible, it is called homogeneous mixture (or solution). If a solid and a liquid of a mixture are visible and can be separated easily, the mixture is called heterogeneous.</span>