The freezing point depression is calculated through the equation,
ΔT = (kf) x m
where ΔT is the difference in temperature, kf is the freezing point depression constant (1.86°C/m), and m is the molality. Substituting the known values,
5.88 = (1.86)(m)
m is equal to 3.16m
Recall that molality is calculated through the equation,
molality = number of mols / kg of solvent
number of mols = (3.16)(1.25) = 3.95 moles
Then, we multiply the calculated amount in moles with the molar mass of ethylene glycol and the answer would be 244.9 g.
The following steps are usually followed: The foreperson tells the court security officer that a verdict has been reached. The judge calls everyone, including you, back into the courtroom, The clerk in the courtroom asks the foreperson for the verdict. The verdict is read into the record in open court.
Answer:
state of matter
Explanation:
so take water for example, water has a melting point and a boiling point right? So if it's below 0 degrees, then it's in its solid phase. If the temperature is above 0 degrees, then the water starts to melt into its liquid phase. Then when the temperature is above 100 degrees, water starts to boil and become its gas phase. This is the same for all substances. The only difference is different substances have different melting and boiling points so the numbers will be different depending on your substance. hope this helped!
Answer:
17.1195 grams of nitric acid are produced.
Explanation:

Moles of nitrogen dioxide :

According to reaction 3 moles of nitrogen dioxides gives 2 moles of nitric acid.
Then 0.5434 moles of nitrogen dioxides will give:
of nitric acid.
Mass of 0.3623 moles of nitric acid :

Theoretical yield = 22.8260 g
Experimental yield = ?


Experimental yield of nitric acid = 17.1195 g
Answer:- 1467 K
Solution:- It asks to calculate the kelvin temperature of the light bulb. Looking at the given info, it is based on ideal gas law equation, PV=nRT.
Given: 
V = 75.0 mL = 0.0750 L
P = 116.8 kPa
We know that, 101.325 kPa = 1 atm
So, 
= 1.15 atm
R is universal gas constant and it's value is
.
T = ?
Let's plug in the values in the equation and solve it for T.

0.08625 = 0.00005878(T)

T = 1467 K
So, the temperature of the light bulb would be 1467 K.