Answer:
C.)organs are a group of two or more different types of tissues that work together to perform a specific function
Explanation:
Cells of similar function are grouped together into tissues. For example, cardiac muscle tissue is present only in the heart, and made up of specialised cells called cardiomyocytes, or cardiac muscle cells. These cells contract to pump blood around the body.
The heart is an organ, consisting of multiple types of tissue including cardiac muscle tissue, connective tissue, blood vessels and epithelial tissue. Therefore, organs represent a group of at least two types of tissue that work together to carry out functions in the body.
Answer:
Caesium (55Cs) has 40 known isotopes, making it, along with barium and mercury, one of the elements with the most isotopes. The atomic masses of these isotopes range from 112 to 151. Only one isotope, 133Cs, is stable. The longest-lived radioisotopes are 135Cs with a half-life of 2.3 million years, ... It constitutes most of the radioactivity still left from the Chernobyl accident ...
Answer:
Your question is complex, because I think you wrote it wrong.
Although in front of this what I can help you is that the carbons are associated between a single, double or triple union.
This depends on whether they are attached to more or less carbons or hydrogens, the carbons have the possibility of joining 4 radicals, both other carbons and hydrogens.
Simple junctions talks about compound organisms called ALKANS.
The double unions, in organic these compounds are called as ALQUENOS.
And as for the tertiary unions, the organic chemistry names them as ALQUINOS.
These compounds that we write, a simple union, the less energy, the less this union, that is why the triple bond is the one that contains the most energy when breaking or destroying it in a reaction.
Explanation:
In a chemical compound the change of these unions if we modified them we would generate changes even in the classifications naming them as well as different compounds and not only that until they change their properties
Answer:
0.45 g
Explanation:
Step 1: Given data
- Molar mass of methionine (M): 149.21 g/mol
- Volume of the solution (V): 20 mL
- Concentration of the solution (C): 150 mM
Step 2: Calculate the moles of methionine (n)
We will use the following expression.
n = C × V
n = 150 × 10⁻³ mol/L × 20 × 10⁻³ L
n = 3.0 × 10⁻³ mol
Step 3: Calculate the mass of methionine (m)
We will use the following expression.
m = n × M
m = 3.0 × 10⁻³ mol × 149.21 g/mol
m = 0.45 g