What are the answer choices?
The atoms that would be expected to be diamagnetic in the ground state is magnesium
The magnetism of an atom refers to its electronic configuration. A diamagnetic atom is an atom whose electrons are all paired.
A paired electron is an electron that occurs in pairs in its orbital shell.
At their respective ground state, the electronic configuration of the given elements are as follows:
The electronic configuration of magnesium is 1s²2s²2p⁶3s². As such its a diamagnetic atom.
The electronic configuration of Potassium is 1s²2s²2p⁶3s²3p⁶4s¹. Hence, Potassium has one unpaired electron in its outermost shell.
The electronic configuration of Chlorine is 1s²2s²2p⁶3s²3p⁵. Hence, Chlorine has one unpaired electron in its outermost shell.
The electronic configuration of Cobalt is 1s²2s²2p⁶3s²3p⁶3d⁷4s². Hence, the unpaired electrons of Cobalt in its outermost shell are three.
Therefore, the atoms that are diamagnetic in the ground state is magnesium.
Learn more about diamagnetic atoms here:
brainly.com/question/18865305?referrer=searchResults
Answer:
K I will attempt
Explanation:
a)

b)
1 : 2 : 2 (I don't know if this is what the question wants but it is what I would answer)
c)
Hydrogen because it requires 2 moles of H2 to react with 1 mole of O2
d)
24 moles of water. Look at stoichiometric coefficient. 2:2 means 24 moles you get 24 moles
e)
Oxygen. 2 < 5/2. Remember, 1 mole of O2 requires 2 moles of H2. But 5/2 is still greater than 2
f)
First, let's find out how many moles of water we can get. Since O2 is the limiting reactant, and O2:H2O ratio is 1:2, we will get 4 moles of H2O. Then, we can multiply 4 by Avogadro's number which is
to get the number of molecules. We get: 2.41 * 10^24 molecules of water.
Answer:
49.2 g/mol
Explanation:
Let's first take account of what we have and convert them into the correct units.
Volume= 236 mL x (
) = .236 L
Pressure= 740 mm Hg x (
)= 0.97 atm
Temperature= 22C + 273= 295 K
mass= 0.443 g
Molar mass is in grams per mole, or MM=
or MM=
. They're all the same.
We have mass (0.443 g) we just need moles. We can find moles with the ideal gas constant PV=nRT. We want to solve for n, so we'll rearrange it to be
n=
, where R (constant)= 0.082 L atm mol-1 K-1
Let's plug in what we know.
n=
n= 0.009 mol
Let's look back at MM=
and plug in what we know.
MM= 
MM= 49.2 g/mol