Answer:
h = 3.5 m
Explanation:
First, we will calculate the final speed of the ball when it collides with a seesaw. Using the third equation of motion:

where,
g = acceleration due to gravity = 9.81 m/s²
h = height = 3.5 m
vf = final speed = ?
vi = initial speed = 0 m/s
Therefore,

Now, we will apply the law of conservation of momentum:

where,
m₁ = mass of colliding ball = 3.6 kg
m₂ = mass of ball on the other end = 3.6 kg
v₁ = vf = final velocity of ball while collision = 8.3 m/s
v₂ = vi = initial velocity of other end ball = ?
Therefore,

Now, we again use the third equation of motion for the upward motion of the ball:

where,
g = acceleration due to gravity = -9.81 m/s² (negative for upward motion)
h = height = ?
vf = final speed = 0 m/s
vi = initial speed = 8.3 m/s
Therefore,

<u>h = 3.5 m</u>
This behavior helps Betty in <u>intellectual </u>development.
continents, paleoclimate indicators, truncated geologic features, and fossils:D
Explanation:
Terminal velocity is given by:

Here, m is the mass of the falling object, g is the gravitational acceleration,
is the drag coefficient,
is the fluid density through which the object is falling, and A is the projected area of the object. in this case the projected area is given by:

Recall that drag coefficient for a horizontal skydiver is equal to 1 and air density is
.

Without drag contribution the motion of the person is an uniformly accelerated motion, thus:
