molar concentration of AgNO₃ solution = 0.118 mole/L
Explanation:
Because we have the volume of the solution and there is no information about the density of the solution I will asume that you ask for the molar concentration.
number of moles = mass / molecular weight
number of moles of AgNO₃ = 10 / 170 = 0.0588
molar concentration = number of moles / volume (L)
molar concentration of AgNO₃ solution = 0.0588 / 0.5
molar concentration of AgNO₃ solution = 0.118 mole/L
Learn more about:
molar concentration
brainly.com/question/1286583
#learnwithBrainly
Answer:
Thomson placed two magnets on either side of the tube, and observed that this magnetic field also deflected the cathode ray. The results of these experiments helped Thomson determine the mass-to-charge ratio of the cathode ray particles, which led to a fascinating discovery, minus the mass of each particle was much, much smaller than that of any known atom. Thomson repeated his experiments using different metals as electrode materials, and found that the properties of the cathode ray remained constant no matter what cathode material they originated from. From this evidence, Thomson made the following conclusions:
The cathode ray is composed of negatively-charged particles.
The particles must exist as part of the atom, since the mass of each particle is only ~1/2000 the mass of a hydrogen atom.
These subatomic particles can be found within atoms of all elements.
While controversial at first, Thomson's discoveries were gradually accepted by scientists. Eventually, his cathode ray particles were given a more familiar name: electrons. The discovery of the electron disproved the part of Dalton's atomic theory that assumed atoms were indivisible. In order to account for the existence of the electrons, an entirely new atomic model was needed.
Explanation:
A
i just searched it up and wanted to help