Answer:
Let the mass of the book be "m", acceleration due to gravity be "g", velocity be "v" and height be "h".
Now if we are holding a book at a certain height (h), <em><u>the potential energy will be maximum which is equal to mass× acceleration due to gravity× height (= mgh)</u>.</em>
(Remember: kinetic energy =0)
Now we consider that the book is dropped, in this case a force will act downward towards the centre of the earth, <em><u>Force= mass× acceleration due to gravity (F=mg)</u></em>. It is equal to the weight of the book.
While the book is falling, the potential energy stored in the book converts into kinetic energy and strikes the floor with <em><u>the maximum kinetic energy= (1/2)×mass×velocity² (=1/2mv²)</u>.</em>
(Remember: kinetic energy=0)
Due to this process the whole energy is conserved.
As the potential energy decreases kinetic energy increases.
Answer:
The force of gravity is not the same as being on the earth. when your on the earth there no gravitational pull its all up to the air
Explanation:
No explanation
V (speed) = F (frequency) x Wavelength
If we rearrange the formula, making frequency the subject;
F (frequency) = Speed ÷ Wavelength
F = 300,000 m\s x 4.5 e -10m
F = 0.08810409956 Hz
Answer: 7750 J
Explanation:
Mechanical energy is potential energy added to kinetic energy.
5000 + 2750 J = 7750 J
Answer:
0.4
Explanation:
Given that a particular inductor is connected to a circuit where it experiences a change in current of 0.8 amps every 0.10 sec. If the inductor has a self-inductance of 2.0 V, what is the inductance
Using the power formula
P = IV
Substitute all the parameters
P = 0.8 × 2
P = 1.6 W
But P = I^2 R
Substitute power and current
1.6 = 0.8^2 R
R = 1.6 / 0.64
R = 2.5 ohms
Inductance = reciprocal of resistance
Inductance = 1 / 2.5
Inductance = 0.4