Answer:
505929 AU
Explanation:
As you may know, one light-year is equivalent to approximately 63241.1 Astronomical Units. To get your answer, simply multiply 63241.1 * 8 to get ≈505929 AU
Answer:
Explanation:
Let the vertical height by which it descends be h . Let it acquire velocity of v .
1/2 mv² = mgh
v² = 2gh
As it leaves the surface of sphere , reaction force of surface R = 0 , so
centripetal force = mg cosθ where θ is the angular displacement from the vertex .
mv² / r = mg cosθ
(m/r )x 2gh = mg cosθ
2h / r = cosθ
cosθ = (r-h) / r
2h / r = r-h / r
2h = r-h
3h = r
h = r / 3
I believe the answer is D, Heat exhaustion involves a lack of sweating, while heat stroke involves extreme sweating. Also just to add the on if heat exhaustion is left untreated then it could turn into a heat stroke.
Answer: a) 11.76 m/s b) 7.056 m
Explanation:
The described situation is as follows:
An object is dropped from the top of a tower and when measuring the time it takes to reach the ground that turns out to be 0.02 minutes.
This situation is related to free fall, this also means we have constant acceleration, hence the equations we will use are:
(1)
(2)
Where:
Is the final velocity of the object
Is the initial velocity of the object (it was dropped)
is the acceleration due gravity
is the height of the tower
is the time it takes to the object to reach the ground
b) Begining with (1):
(3)
(4)
(5) This is the final velocity of the object
a) Substituting (5) in (2):
(6)
Clearing
:
(7)
(8) This is the height of the tower
F = 2820.1 N
Explanation:
Let the (+)x-axis be up along the slope. The component of the weight of the crate along the slope is -mgsin15° (pointing down the slope). The force that keeps the crate from sliding is F. Therefore, we can write Newton's 2nd law along the x-axis as
Fnet = ma = 0 (a = 0 no sliding)
= F - mgsin15°
= 0
or
F = mgsin15°
= (120 kg)(9.8 m/s^2)sin15°
= 2820.1 N