Explanation:
Given that,
Mass if the rock, m = 1 kg
It is suspended from the tip of a horizontal meter stick at the 0-cm mark so that the meter stick barely balances like a seesaw when its fulcrum is at the 12.5-cm mark.
We need to find the mass of the meter stick. The force acting by the stone is
F = 1 × 9.8 = 9.8 N
Let W be the weight of the meter stick. If the net torque is zero on the stick then the stick does not move and it remains in equilibrium condition. So, taking torque about the pivot.

W = 3.266 N
The mass of the meters stick is :

So, the mass of the meter stick is 0.333 kg.
Answer:
No one is right
Explanation:
John Case:
The function
is defined between -1 and 1, So it is not possible obtain a value
greater.
In addition, if you move the function cosine a T Value, and T is the Period, the function take the same value due to the cosine is a periodic function.
Larry case:
Is you have
, the domain of this is [0,2].
it is equivalent to adding 1 to the domain of the
, and its mean that the function
, in general, is not greater than
.
4300 they didn’t look alike because DJ sinwosnbube is wow
Answer:
The eyepiece comprises a converging lens that is a magnifying lens. The lens has a short focal length,
This lens magnifies this image.
Explanation:
In lenses such as those in microscopes and telescopes, the objective forms an image with the following features:
1. Image is real
2. Image is diminished in size
3. Also, the image formed is upside-down.
The eyepiece comprises a converging lens that is a magnifying lens. The lens has a short focal length,
This lens magnifies this image.
The complete question is;
A circular coil consists of N = 410 closely winded turns of wire and has a radius R = 0.75 m. A counterclockwise current I = 2.4 A is in the coil. The coil is set in a magnetic field of magnitude B = 1.1 T.
a. Express the magnetic dipole moment μ in terms of the number of the turns N, the current I, and radius
R.
b. Which direction does μ go?
Answer:
A) μ = 1738.87 A.m²
B) The direction of the magnetic moment will be in upward direction.
Explanation:
We are given;
The number of circular coils;
N = 410
The radius of the coil;R = 0.75m
The current in the coils; I = 2.4 A
The strength of magnetic field;
B =1.1T
The formula for magnetic dipole moment is given as;
μ = NIA
Where;
N is number of turns
I is current
A is area
Now, area; A = πr²
So, A = π(0.75)²
Thus,plugging in relevant values, the magnetic dipole moment is;
μ = 410 * 2.4 * π(0.75)²
μ = 1738.87 A.m²
B) According to Fleming's right hand rule, the direction of the magnetic moment comes out to be in upward direction.