Answer:
To correct the defects of vision by measuring the radius of curvature and thus the power of the lenses.
Explanation:
A spherometer is an instrument used to measure the curvature of objects such as lenses and curved mirrors.
Generally it consists of a fine screw which is moving in a nut carried on the center of a 3 small legged table or frame. The feet forms the vertices of an equilateral triangle. The lower end of the screw and those of the table legs are finely tapered and terminate in hemispheres.
If the screw has two turns of the thread to the milli meter the head is generally divided into 50 equal parts, so that differences of 0.01 millimeter may be measured without using a vernier scale.
The spherometer is used to measure the radius of curvature of the lenses so that the opthalmologist find the focal length of the lens and then give the power to the lens to correct the defects of vision.
Answer:
The amplitude of the spring is 32.6 cm.
Explanation:
It is given that,
Mass of the block, m = 2 kg
Force constant of the spring, k = 300 N/m
At t = 0, the velocity of the block, v = -4 m/s
Displacement of the block, x = 0.2 mm = 0.0002 m
We need to find the amplitude of the spring. We know that the velocity in terms of amplitude and the angular velocity is given by :



So, 
A = 0.326 m
or
A = 32.6 cm
So, the amplitude of the spring is 32.6 cm. Hence, this is the required solution.
Unicellular: An organism that consists of a single cell
Multicellular: An organism with multiple cells
Eukaryotic: A cell that contains a nucleus
Prokaryotic: A cell with no nucleus
Autotrophic: An organism that has the ability to make their own food
Heterotrophic: Organism that cannot create their own food
Asexual reproduction: When an organism has the ability to create offspring without the help of another organism
Sexual Reproduction: When two organisms create an offspring using the gametes
Answer:
They will both bounce back at the same speed they had before the collision
Explanation:
Assuming an elastic collision, kinetic energy will be conserved. Therefore, the billiard balls will have the same speed after the collision as before the collision.