Answer:
S = 0.5 km
velocity of motorist = 42.857 km/h
Explanation:
given data
speed = 70 km/h
accelerates uniformly = 90 km/h
time = 8 s
overtakes motorist = 42 s
solution
we know initial velocity u1 of police = 0
final velocity u2 = 90 km/h = 25 mps
we apply here equation of motion
u2 = u1 + at
so acceleration a will be
a =
a = 3.125 m/s²
so
distance will be
S1 = 0.5 × a × t²
S1 = 100 m = 0.1 km
and
S2 = u2 × t
S2 = 25 × 16
S2 = 400 m = 0.4 km
so total distance travel by police
S = S1 + S2
S = 0.1 + 0.4
S = 0.5 km
and
when motorist travel with uniform velocity
than total time = 42 s
so velocity of motorist will be
velocity of motorist = ![\frac{S}{t}](https://tex.z-dn.net/?f=%5Cfrac%7BS%7D%7Bt%7D)
velocity of motorist =
velocity of motorist = 42.857 km/h
Answer:
A key element is powering economies with clean energy, replacing polluting coal - and gas and oil-fired power stations - with renewable energy sources, such as wind or solar farms. This would dramatically reduce carbon emissions. Plus, renewable energy is now not only cleaner, but often cheaper than fossil fuels
Explanation:
here is your answer if you like my answer please follow
Answer:
symbolic machine code.
Explanation:
The instructions in the language are closely linked to the machine's architecture.
Answer:
(a) 561.12 W/ m² (b) 196.39 MW
Explanation:
Solution
(a) Determine the energy and power of the wave per unit area
The energy per unit are of the wave is defined as:
E = 1 /16ρgH²
= 1/16 * 1025 kg/ m3* 9.81 m/s² * (2.5 m )²
=3927. 83 J/m²
Thus,
The power of the wave per unit area is,
P = E/ t
= 3927. 83 J/m² / 7 s = 561.12 W/ m²
(b) The average and work power output of a wave power plant
W = E * л * A
= 3927. 83 J/m² * 0.35 * 1 *10^6 m²
= 1374.74 MJ
Then,
The power produced by the wave for one km²
P = P * л * A
= 5612.12 W/m² * 0.35 * 1* 10^6 m²
=196.39 MW