Initial volume of the balloon =
= 348 mL
Initial temperature of the balloon
= 
Final volume of the balloon
= 322 mL
Final temperature of the balloon = 
According to Charles law, volume of an ideal gas is directly proportional to the temperature at constant pressure.

On plugging in the values,


Therefore, the temperature of the freezer is 276 K
It's A, t<span>The figure is a molecule and an element.</span>
Answer: (a) The solubility of CuCl in pure water is
.
(b) The solubility of CuCl in 0.1 M NaCl is
.
Explanation:
(a) Chemical equation for the given reaction in pure water is as follows.

Initial: 0 0
Change: +x +x
Equilibm: x x

And, equilibrium expression is as follows.
![K_{sp} = [Cu^{+}][Cl^{-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BCu%5E%7B%2B%7D%5D%5BCl%5E%7B-%7D%5D)

x = 
Hence, the solubility of CuCl in pure water is
.
(b) When NaCl is 0.1 M,
, 
, 
Net equation: 
= 0.1044
So for, 
Initial: 0.1 0
Change: -x +x
Equilibm: 0.1 - x x
Now, the equilibrium expression is as follows.
K' = 
0.1044 = 
x = 
Therefore, the solubility of CuCl in 0.1 M NaCl is
.
Iodine is decolorized.
The first reaction stated in the question occurs as follows;
2 KI (aq) + 2 H2SO4 (aq) + MnO2 (s) → MnSO4 (aq) + K2SO4 (aq) + I2 (s) + 2 H2O (l)
The reaction here is the formation of iodine from MnO2 and KI in the presence of dropwise H2SO4.
Hypo is the common name of sodium thio-sulphate or sodium hypo-sulfite.
The equation of the titration reaction is;
2Na2S2O3 + I2→ Na2S4O6 + 2NaI
When this reaction takes place, iodine is decolorized due to its reduction to I^-.