Answer:
1) Endothermic.
2)
3)
Explanation:
Hello there!
1) In this case, for these calorimetry problems, we can realize that since the temperature decreases the reaction is endothermic because it is absorbing heat from the solution, that is why the temperature goes from 22.00 °C to 16.0°C.
2) Now, for the total heat released by the reaction, we first need to assume that all of it is released by the solution since it is possible to assume that the calorimeter is perfectly isolated. In such a way, it is also valid to assume that the specific heat of the solution is 4.184 J/(g°C) as it is mostly water, therefore, the heat released by the reaction is:
3) Finally, since the enthalpy of reaction is calculated by dividing the heat released by the reaction over the moles of the solute, in this case NH4Cl, we proceed as follows:

Best regards!
Best regards!
It would be 5.0 more in i did this
<span>Equation:2H2(g) + O2(g) → 2H2O(g)
</span><span>
Smaller container means less volume, and the molecules will hit the walls of the container more frequently because there's less space available and the pressure will go up. I guess this would mean that the side with fewer moles would be favored as a result. We count the number of moles on the reactants and products and find that there are fewer moles on the product side, so I guess this would favor the product formation.
</span>
Covalent bonding!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
to be in kg/mL. What you need to do first is write 22.4 kg/L over 1. Divide this by 1000 because there are 1000 mL per L. Your equation will look like 22.4 kg/L over 1 divided by 1000/1. You end up getting .0224 kg/mL.