Answer:
As Per Given Information
20x objective lens was used by specimen
10x ocular lens was also used by him.
we have to find the total magnification.
For calculating the total magnification we 'll simply do multiplication
Total Magnification = 20x × 10x
Total Magnification = 200x
So , the total magnification will be 200x .
The magnitude of their resultant vector is 4.6 meters/seconds
Since we are to add the velocity vectors in order to find the magnitude of their resultant vector.
Hence:
Resultant vector magnitude=5.8 meters/seconds + (1.2 meters/seconds)
Resultant vector magnitude=5.8 meters/seconds-1.2 meters/seconds
Resultant vector magnitude 4.6 meters/seconds
Inconclusion The magnitude of their resultant vector is 4.6 meters/seconds
Learn more here:
brainly.com/question/11134601
Answer:
(i) W = 8.918 N
(ii) 
(iii) d = 9.1 cm
Explanation:
Part a)
As we know that weight of cube is given as


here we know that



now the mass of the ice cube is given as

now weight is given as

Part b)
Weight of the liquid displaced must be equal to weight of the ice cube
Because as we know that force of buoyancy = weight of the of the liquid displaced

So here volume displaced is given as



Part c)
Let the cube is submerged by distance "d" inside water
So here displaced water weight is given as



so it is submerged by d = 9.1 cm inside water
Answer: A
Explanation: We know that f=p*n
f=50*300=15000 Hz = 15kHz.
Have a great day! <3
Answer:
vB = 15.4 m/s
Explanation:
Principle of conservation of energy:
Because there is no friction the mechanical energy is conserve
ΔE = 0
ΔE : mechanical energy change (J)
K : Kinetic energy (J)
U: Potential energy (J)
K = (1/2)mv²
U = m*g*h
Where :
m: mass (kg)
v : speed (m/s)
h : hight (m)
Ef - Ei = 0
(K+U)final - (K+U)initial =0
(K+U)final = (K+U)initial
((1/2)mv²+m*g*h)final = ((1/2)mv²+m*g*h)initial , We divided by m both sides of the equation:
((1/2)vB² + g*hB = (1/2 )vA²+ g*hA
(1/2) (vB)² + (9.8)*(14.7) = 0 + (9.8)(26.8 )
(1/2) (vB)² = (9.8)(26.8 ) - (9.8)*(14.7)
(vB)² = (2)(9.8)(26.8 - 14.7)
(vB)² = 237.16

vB = 15.4 m/s : speed of the cart at B