Answer:
<em>a. The rock takes 2.02 seconds to hit the ground</em>
<em>b. The rock lands at 20,2 m from the base of the cliff</em>
Explanation:
Horizontal motion occurs when an object is thrown horizontally with an initial speed v from a height h above the ground. When it happens, the object moves through a curved path determined by gravity until it hits the ground.
The time taken by the object to hit the ground is calculated by:

The range is defined as the maximum horizontal distance traveled by the object and it can be calculated as follows:

The man is standing on the edge of the h=20 m cliff and throws a rock with a horizontal speed of v=10 m/s.
a,
The time taken by the rock to reach the ground is:


t = 2.02 s
The rock takes 2.02 seconds to hit the ground
b.
The range is calculated now:

d = 20.2 m
The rock lands at 20,2 m from the base of the cliff
If F = Gm₁m₂/d², and we change m₁ to 5m₁ and m₂ to 2m₂, then the new magnitude of the gravitational force is
F' = G (5m₁) (2m₂) / d²
F' = 10 Gm₁m₂ / d²
but this is really just F' = 10F. So J is the correct choice.
Answer:
a) v = 6.43 m/s
b) v = 15.8 m/s
Explanation:
Speed of car = 56 km/h
56 km/h = 14.4 m/s
Angle rain makes on the glass to the vertical = 66°
Thus knowing that the opposite side of the angle is the distance moved by the car, and the adjacent side is the distance traveled by the rain in the same time
both of which are directly proportional to their velocities
Then
tan(66°) = 14.44m/s ÷ x
or x = 14.44/tan(66°)
Which is the vertical raindrop velocity of the relative to earth
v = 6.43 m/s vertically towards earth
For v relative to the car is we have vector sum of both velocities
v = √(14.44^2 + 6.43^2) = 15.8 m/s which is the velocity relative to car
= 15.8 m/s
the answer is the forth one treatment of cancer
Answer:the summery is ...i really don't know the picture is blurry and I cant see can you make it clear?
Explanation: