The ideal gas constant is a proportionality constant that is added to the ideal gas law to account for pressure (P), volume (V), moles of gas (n), and temperature (T) (R). R, the global gas constant, is 8.314 J/K-1 mol-1.
According to the Ideal Gas Law, a gas's pressure, volume, and temperature may all be compared based on its density or mole value.
The Ideal Gas Law has two fundamental formulas.
PV = nRT, PM = dRT.
P = Atmospheric Pressure
V = Liters of Volume
n = Present Gas Mole Number
R = 0.0821atmLmoL K, the Ideal Gas Law Constant.
T = Kelvin-degree temperature
M stands for Molar Mass of the Gas in grams Mol d for Gas Density in gL.
Learn more about Ideal gas law here-
brainly.com/question/28257995
#SPJ4
Answer: 27.21 V
Explanation:
The <u>electric potential</u>
due to a point charge is expressed as:

Where:
is the <u>electric constant</u>
is the <u>electric charge of the hydrogen nucleus</u>, which is positive
is the <u>distance</u>
Rewritting the equation with the known values:

Finally:
The Big Bang theory is matter and energy in the universe exploded out from one point. As the explosion occurred, energy and matter spread outward and formed the universe. The matter from the Big Bang formed clouds of gas.
Answer:
The y-component of the electric force on this charge is 
Explanation:
<u>Given:</u>
- Electric field in the region,

- Charge placed into the region,

where,
are the unit vectors along the positive x and y axes respectively.
The electric field at a point is defined as the electrostatic force experienced per unit positive test charge, placed at that point, such that,

Thus, the y-component of the electric force on this charge is 
you take a length of ordinary wire, make it into a big loop, and lay it between the poles of a powerful, permanent horseshoe magnet. Now if you connect the two ends of the wire to a battery, the wire will jump up briefly.When an electric current starts to creep along a wire, it creates a magnetic field all around it. If you place the wire near a permanent magnet, this temporary magnetic field interacts with the permanent magnet's field.