Answer : The enthalpy of the given reaction will be, -1048.6 kJ
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
The main reaction is:

The intermediate balanced chemical reactions are:
(1)

(2)

(3)

(4)

(5)

Now reversing reaction 2, multiplying reaction 3 by 4, reversing reaction 1 and multiplying by 2, reversing reaction 5 and multiplying by 2 and then adding all the equations, we get :
(1)

(2)

(3)

(4)

(5)

The expression for enthalpy of main reaction will be:



Therefore, the enthalpy of the given reaction will be, -1048.6 kJ
Answer:

Explanation:
We will need a balanced chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 98.08 392.18
2Cr + 3H₂SO₄ ⟶ Cr₂(SO₄)₃ + 3H₂
To solve the stoichiometry problem, you must
- Use the molar mass of H₂SO₄ to convert the mass of H₂SO₄ to moles of H₂SO₄
- Use the molar ratio to convert moles of H₂SO₄ to moles of Cr₂(SO₄)₃
- Use the molar mass of Cr₂(SO₄)₃ to convert moles of Cr₂(SO₄)₃ to mass of Cr₂(SO₄)₃
a) Mass of Cr₂(SO₄)₃
(i) Mass of pure H₂SO₄

(ii) Moles of H₂SO₄

(iii) Moles of Cr₂(SO₄)₃
The molar ratio is 1 mol Cr₂(SO₄)₃:3 mol H₂SO₄

(iv) Mass of Cr₂(SO₄)₃

b) Percentage yield
It is impossible to get a yield of 485.9 g. I will assume you meant 185.9 g.

Explanation:
Litmus paper is your answer
please mark as brilliant
I'm not 100% sure on this one, but I think it's C.
Sorry, I'm not really good with Chemistry.
Hope this helps :)