Answer:
g_x = 3.0 m / s^2
Explanation:
Given:
- Change in length of spring [email protected] = 22.6 cm
- Time taken for 11 oscillations t = 19.0 s
Find:
- The value of gravitational free fall g_x at plant X:
Solution:
- We will assume a simple harmonic motion of the mass for which Time is:
T = 2*pi*sqrt(k / m ) ...... 1
- Sum of forces in vertical direction @equilibrium is zero:
F_net = k*x - m*g_x = 0
(k / m) = (g_x / x) .... 2
- substitute Eq 2 into Eq 1:
2*pi / T = sqrt ( g_x / x )
g_x = (2*pi / T )^2 * x
- Evaluate g_x:
g_x = (2*pi / (19 / 11) )^2 * 0.226
g_x = 3.0 m / s^2
Take 68.2/60 = 1.137 hr
take 56.9/1.137 = 50.043 mi/hr
take 189/211 = 0.896
24.8/2 = 12.4 m
12.4/82.3 = 0.15s
The work done by the machine is equal to the product between the force applied and the distance over which the force is applieds, so in this case:

And the power of the machine is equal to the ratio between the work done by the machine and the time taken:
Answer:
I Think its ABC
Explanation:
No air is the lightest
Helium is lighter than regular air that's why it goes up so then the regular air would be heaviest.
Answer:
The time taken is 
Explanation:
From the question we are told that
The length of steel the wire is 
The length of the copper wire is 
The diameter of the wire is 
The tension is 
The time taken by the transverse wave to travel the length of the two wire is mathematically represented as

Where
is the time taken to transverse the steel wire which is mathematically represented as
![t_s = l_1 * [ \sqrt{ \frac{\rho * \pi * d^2 }{ 4 * T} } ]](https://tex.z-dn.net/?f=t_s%20%20%3D%20l_1%20%2A%20%20%5B%20%5Csqrt%7B%20%5Cfrac%7B%5Crho%20%2A%20%5Cpi%20%2A%20%20d%5E2%20%7D%7B%204%20%2A%20%20T%7D%20%7D%20%5D)
here
is the density of steel with a value 
So
![t_s = 31 * [ \sqrt{ \frac{8920 * 3.142* (1*10^{-3})^2 }{ 4 * 122} } ]](https://tex.z-dn.net/?f=t_s%20%20%3D%2031%20%2A%20%20%5B%20%5Csqrt%7B%20%5Cfrac%7B8920%20%2A%203.142%2A%20%20%281%2A10%5E%7B-3%7D%29%5E2%20%7D%7B%204%20%2A%20%20122%7D%20%7D%20%5D)

And
is the time taken to transverse the copper wire which is mathematically represented as
![t_c = l_2 * [ \sqrt{ \frac{\rho_c * \pi * d^2 }{ 4 * T} } ]](https://tex.z-dn.net/?f=t_c%20%20%3D%20l_2%20%2A%20%20%5B%20%5Csqrt%7B%20%5Cfrac%7B%5Crho_c%20%2A%20%5Cpi%20%2A%20%20d%5E2%20%7D%7B%204%20%2A%20%20T%7D%20%7D%20%5D)
here
is the density of steel with a value 
So
![t_c = 17 * [ \sqrt{ \frac{7860 * 3.142* (1*10^{-3})^2 }{ 4 * 122} } ]](https://tex.z-dn.net/?f=t_c%20%20%3D%2017%20%2A%20%20%5B%20%5Csqrt%7B%20%5Cfrac%7B7860%20%2A%203.142%2A%20%20%281%2A10%5E%7B-3%7D%29%5E2%20%7D%7B%204%20%2A%20%20122%7D%20%7D%20%5D)

So


