Unscrambling
1. resting heart rate
2. overload
3. workout
4. specificity
5. cool-down
6. progression
7. warm-up
8. the last one can only be instance, but there was a typo on the paper.
Mercury has less mass than earth. So the answer is B
Complete Question:
Find the resistance of a wire of length 0.65 m, radius 0.25 mm and resistivity 3 * 10^{-6} ohm-metre.
Answer:
Resistance = 9.95 Ohms
Explanation:
<u>Given the following data;</u>
Length = 0.65 m
Radius = 0.25 mm to meters = 0.00025 m
Resistivity = 3 * 10^{-6} ohm-metre.
To find the resistance of the wire;
Mathematically, resistance is given by the formula;

Where;
- P is the resistivity of the material.
- L is the length of the material.
- A is the cross-sectional area of the material.
First of all, we would find the cross-sectional area of the wire.
Area of circle = πr²
Substituting into the equation, we have;
Area = 3.142 * (0.00025)²
Area = 3.142 * 6.25 * 10^{-8}
Area = 1.96 * 10^{-7} m²
Now, to find the resistance of the wire;


<em>Resistance = 9.95 Ohms </em>
Answer:
the source of sound moves towards an observe
Explanation:
The Doppler effect is related to waves such as sound or light. the effect causes an increase or decrease in the frequency of sound light or other waves when the souces either move towards or away from the observer. For example the siren of the train to a person on the platform, the redshift seen by astronomers.
Therefore, The Doppler shift can be observed when the source of sound moves towards an observer From a place closer to the observer than the last wave's crest, each consecutive wave crest is sent. Each wave therefore, takes a little less time than the preceding wave to reach the observer.