Given:
M = 0.0150 mol/L HF solution
T = 26°C = 299.15 K
π = 0.449 atm
Required:
percent ionization
Solution:
First, we get the van't Hoff factor using this equation:
π = i MRT
0.449 atm = i (0.0150 mol/L) (0.08206 L atm / mol K) (299.15 K)
i = 1.219367
Next, calculate the concentration of the ions and the acid.
We let x = [H+] = [F-]
[HF] = 0.0150 - x
Adding all the concentration and equating to iM
x +x + 0.0150 - x = <span>1.219367 (0.0150)
x = 3.2905 x 10^-3
percent dissociation = (x/M) (100) = (3.2905 x 10-3/0.0150) (100) = 21.94%
Also,
percent dissociation = (i -1) (100) = (</span><span>1.219367 * 1) (100) = 21.94%</span>
Answer:
4 moles
Explanation:
From the equation 1 mole of C6H1206 produces 6 moles of CO2.
Therefore the answer is 24/6 = 4 moles of C6H1206.
Answer:
200 mL = 200 cm³
Explanation:
The relationship between cm³ and mL is 1:1.
1 cm³ = 1 mL
Thus, 200 mL is converted to cm³ as follows:
(200 mL)(1 cm³/1 mL) = 200 cm³
A chemical reaction is the process by which a CHANGE takes place (?)
Answer:
<h2>
total no. of electron present in Valency shell is called valency electron </h2><h2>___________________</h2>
<h2>valency shell is that in which last electron is present</h2>