Answer:

Explanation:
We are asked to find how many kilojoules of energy would be required to heat a block of aluminum.
We will use the following formula to calculate heat energy.

The mass (m) of the aluminum block is 225 grams and the specific heat (c) is 0.897 Joules per gram degree Celsius. The change in temperature (ΔT) is the difference between the final temperature and the initial temperature.
- ΔT = final temperature - inital temperature
The aluminum block was heated from 23.0 °C to 73.5 °C.
- ΔT= 73.5 °C - 23.0 °C = 50.5 °C
Now we know all three variables and can substitute them into the formula.
- m= 225 g
- c= 0.897 J/g° C
- ΔT= 50.5 °C

Multiply the first two numbers. The units of grams cancel.



Multiply again. This time, the units of degrees Celsius cancel.


The answer asks for the energy in kilojoules, so we must convert our answer. Remember that 1 kilojoule contains 1000 joules.

Multiply by the answer we found in Joules.




The original values of mass, temperature, and specific heat all have 3 significant figures, so our answer must have the same. For the number we found, that is the tneths place. The 9 in the hundredth place tells us to round the 1 up to a 2.

Approximately <u>10.2 kilojoules</u> of energy would be required.
True. The prototype is usually the "rough draft" the figure out what needs fixed or upgraded before they make the final product "final draft". Hope that helped!
This is called the pedigree chart.
The reaction between Na2S and CuSO4 will give us the balanced chemical reaction of,
Na2S + CUSO4 --> Na2SO4 + CuS
This means that for every 78g of Na2S, there needs to be 159.6 g of CuSO4. The ratio is equal to 0.4887 of Na2S: 1 of CuSO4. Thus, for every 12.1g of CuSO4, we need only 5.91 g of Na2S. Thus, there is an excess of 9.58 g of Na2S. The answer is letter C.