Answer:
The acceleration experienced by the occupants of the spaceship during launch is 282652.782 meters per square second.
Explanation:
Let suppose that spaceship is accelerated uniformly. A yard equals 0.914 meters. A feet equals 0.304 meters. If air viscosity and friction can be neglected, then acceleration (
), measured in meters per square second, is estimated by this kinematic formula:
(1)
Where:
- Travelled distance, measured in meters.
,
- Initial and final speeds of the spaceship, measured in meters.
If we know that
,
and
, then the acceleration experimented by the spaceship is:


The acceleration experienced by the occupants of the spaceship during launch is 282652.782 meters per square second.
The real place should theoretically have space for 87 passengers if it is an exact model and doesn't have modifications in the seat numbers.
Answer:
= 1.9792 × 10^10
Significant Figures= 5
Explanation:
Look at the attachment below
Hope this helps (:
The correct answer for this question is this one: "The drops dripped from a bloody knife about 2 ft above the ground."
<span>On a floor directly underneath a second-floor balcony, there are several spherical drops of blood about 7 mm in diameter. The statement that best accounts for the drops is that <em>the </em></span><span><em>drops dripped from a bloody knife about 2 ft above the ground.</em>
</span>
Hope this helps answer your question and have a nice day ahead.
Answer:
<u>We are given: </u>
initial velocity (u) = 0 m/s
final velocity (v) = 10 m/s
displacement (s) = 20 m
acceleration (a) = a m/s/s
<u>Solving for 'a'</u>
From the third equation of motion:
v² - u² = 2as
replacing the variables
(10)² - (0)² = 2(a)(20)
100 = 40a
a = 100 / 40
a = 2.5 m/s²