Answer:

Explanation:
As we know that the tension in two strings are


now we have

so we can say


also we have


now divide two equations



The height, h to which the package of mass m bounces to depends on its initial velocity, v and the acceleration due to gravity, g and is given below:

<h3>What are perfectly elastic collision?</h3>
Perfectly elastic collisions are collisions in which the momentum as well as the energy of the colliding bodies is conserved.
In perfectly elastic collisions, the sum of momentum before collision is equal to the momentum after collision.
Also, the sum of kinetic energy before collision is equal to the sum of kinetic energy after collision.
Since some of the Kinetic energy is converted to potential energy of the body;


Therefore, the height to which the package m bounces to depends on its initial velocity and the acceleration due to gravity.
Learn more about elastic collisions at: brainly.com/question/7694106
To answer the problem we would be using this formula which isE = hc/L where E is the energy, h is Planck's constant, c is the speed of light and L is the wavelength
L = hc/E = 4.136×10−15 eV·s (2.998x10^8 m/s)/10^4 eV
= 1.240x10^-10 m
= 1.240x10^-1 nm
Answer:
The electromagnetic force
Explanation:
The electromagnetic force is one of the four fundamental forces of nature. Namely, they are:
- Electromagnetic force: it is the force exerted between electrically charged particles (and between magnetic fields). The force can be either attractive (if the two charges have opposite signs) or repulsive (if the two charges have same sign), and it acts over an infinite range.
- Gravitational force: it is the force exerted between objects with mass. It is always attractive, and it also has an infinite range of action. It is the weakest of the four fundamental forces.
- Strong nuclear force: it is the force that acts between protons and neutrons inside the nucleus, and it is responsible for keeping the nucleus together and preventing it from breaking apart (due to the electrostatic repulsion between protons)
- Weak nuclear force: it is the force responsible for certains nuclear decays, such as the beta decay, in which a neutron turns into a proton, emitting an electron and an antineutrino.