A reaction mechanism must ultimately be understood as a "blow-by-blow" description of the molecular-level events whose sequence leads from reactants to products. These elementary steps (also called elementary reactions) are almost always very simple ones involving one, two, or [rarely] three chemical species which are classified
It is common knowledge that chemical reactions occur more rapidly at higher temperatures. Everyone knows that milk turns sour much more rapidly if stored at room temperature rather than in a refrigerator, butter goes rancid more quickly in the summer than in the winter, and eggs hard-boil more quickly at sea level than in the mountains. For the same reason, cold-blooded animals such as reptiles and insects tend to be noticeably more lethargic on cold days.
Thermal energy relates direction to motion at the molecular level. As the temperature rises, molecules move faster and collide more vigorously, greatly increasing the likelihood of bond cleavages and rearrangements as described above.
Answer:
As you cool a matter to absolute zero, their kinetic energy reduces significantly and the molecules slows down and begins to aggregate together. ... As heat is added, the molecules gain more kinetic energy. This shown in their increase motion. When heat is withdrawn, the particles slows down hope this helped
Answer:
Americium is: [Rn]5f^7s^2
Bismuth is: [Xe]6s^24f^145d^106p^3
Tin is: [Kr]4d^105s^25p^2
Vanadium is: [Ar]3d^34s^2
Aluminum is [Ne]3s^23p^1