Answer:
oxidation occurs at the cathode.
Explanation:
In a voltaic cell electrons move from anode to cathode. At the anode, species give up electrons. This is an oxidation reaction depicted by the oxidation half equation. At the cathode, species accept electrons and become reduced. This is depicted by the reduction half equation. In summary; in a Voltaic cell, oxidation occurs at the anode while reduction occurs at the cathode.
Answer:
It is
D- <u><em>DEFINE</em></u> the problem
R-<em><u>RESEARCH</u></em> on the problem
H- Carry out a <u><em>HYPOTHESIS</em></u>
E- carry out an <em><u>EXPERIMENT</u></em>.
R-Analyse the <u><em>RESULT</em></u>
C-summarise the <u><em>CONCLUSION</em></u>.
Explanation:
Hope it helps.
If you really keep an eye on the flow chart, the only ions you can consider as being "Definitely not present" are: Cr3+, Fe3+, and Zn2+. The rest of the ions should be considered under "Possibly present", as we cannot conclude if any of the ions are "Definitely present".
1mol aluminium chloride gives 1mol aluminium and 3mol chloride
density equals mass divided by volume
d=m/v
m=v*d
=78.3*2.7
=211.41grams
The nuclear reaction occurring is known as alpha-decay, and during this process, an alpha particle is released from a heavy radioactive nucleus to form a lighter more stable nucleus. The alpha particle is equivalent to a helium nucleus, which means it contains 2 protons and two neutrons (net charge of +2)
The decay equation is:
Rn → Po + α