<em>hey, im jordan :)</em>
the SI unit for the mass of subatomic particles is <u>amu (atomic mass unit)</u>
<em>hope this helps!</em>
<em>have a great day :D</em>
Answer:
B = mass, height
Gravitational potential energy is a function of the mass ans the height of an object.
Explanation:
The formula for gravitational potential energy is
GPE = mgh
m = mass in kilogram
g = acceleration due to gravity
h = height in meter above the ground
Formula:
GP.E = mgh
Consider the following example:
A crane lifts a 75kg mass a height of 8 m. Calculate the gravitational potential energy gained by the mass:
Formula:
GP.E = mgh
Now we will put the values in formula.
g = 9.8 m/s²
GP.E = 75 Kg × 9.8 m/s²× 8 m
GP.E = 5880 Kg.m²/s²
Kg.m²/s² = j
GP.E = 5880 j
Wavelength is 6.976 x 10^ -35 m
Explanation:
In this, we can use De Broglie’s equation. This equation is the relationship between De Broglie’s wavelength, velocity and the mass of a moving object. In this equation, we are using plank's constant which is 6.626 x 10^-34 m^2 kg/s.
We know that one mile per hour is equivalent to 0.447 M/S.
And One gram is equivalent to 10^-3 kg.
De Broglie’s wavelength = λ ( wave length) = Plank’s constant/ Mass x velocity
λ ( wave length) = 6.626 x 10^ -34/ (425 x10^-3) x ( 50 x 0.447)
= 6.626 x 10^ -34/ 0. 425 x 22.35
= 6.626 x 10^ -34/ 9.498
= 6.976 x10^ -35 m
So, the wavelength of the football will be 6.976 x 10^ -35 m
Answer:
what happens if i mix red with green?