Answer:
The pH is equal to 4.41
Explanation:
Since HClO is a weak acid, its dissociation in aqueous medium is:
HClO ⇄ ClO- + H+
start: 0.05 0 0
change -x +x +x
balance 0.05-x x x
As it is a weak acid it dissociates very little, in its ClO- and H + ions, so the change is negative, where x is a degree of dissociation.
the acidity constant when equilibrium is reached is equal to:
![Ka=\frac{[ClO-]*[H+]}{[HClO]}=\frac{x*x}{0.05-x}=3x10^{-8}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BClO-%5D%2A%5BH%2B%5D%7D%7B%5BHClO%5D%7D%3D%5Cfrac%7Bx%2Ax%7D%7B0.05-x%7D%3D3x10%5E%7B-8%7D)
The 0.05-x fraction can be approximated to 0.05, because the ionized fraction (x) is very small, therefore we have:

clearing the x and calculating its value we have:
![x=3.87x10^{-5}=[H+]=[ClO-]](https://tex.z-dn.net/?f=x%3D3.87x10%5E%7B-5%7D%3D%5BH%2B%5D%3D%5BClO-%5D)
the pH can be calculated by:
![pH=-log[H+]=-log[3.87x10^{-5}]=4.41](https://tex.z-dn.net/?f=pH%3D-log%5BH%2B%5D%3D-log%5B3.87x10%5E%7B-5%7D%5D%3D4.41)
Answer:
Volunteering helps the teens gain new skills necessary for the job market such as leadership, communication skills, dependability, time management, and decision making.
Explanation:
The Hidden Values of Volunteering
Learn New Skills. One fantastic thing that volunteering can offer you is a new understanding of your own abilities. ...
Test for Your Future. An added side effect of volunteering is that it gives you an opportunity to try out possible careers, majors, and opportunities. ...
Meet New People. ...
Accomplish Something Important.
HOPE THIS HELPED ❤✨
1)<em>1</em><em>.</em><em>5</em><em>4</em><em>9</em><em>=</em><em>1</em><em>.</em><em>5</em><em>5</em><em>M</em>
2)<em>m</em><em>a</em><em>y</em><em> </em><em>i</em><em>n</em><em>c</em><em>l</em><em>u</em><em>d</em><em>e</em><em> </em><em>a</em><em>l</em><em>l</em><em> </em><em>o</em><em>f</em><em> </em><em>t</em><em>h</em><em>e</em><em>s</em><em>e</em><em> </em><em>c</em><em>h</em><em>a</em><em>r</em><em>a</em><em>c</em><em>t</em><em>e</em><em>r</em><em>i</em><em>s</em><em>t</em><em>i</em><em>c</em><em>s</em>
3)<em>s</em><em>t</em><em>r</em><em>o</em><em>n</em><em>g</em><em>e</em><em>r</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>a</em><em>c</em><em>i</em><em>d</em>
4)<em>l</em><em>o</em><em>w</em><em>e</em><em>r</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>c</em><em>o</em><em>n</em><em>c</em><em>e</em><em>n</em><em>t</em><em>r</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>o</em><em>f</em><em> </em><em>H</em><em>3</em><em>O</em><em>+</em><em> </em><em>i</em><em>o</em><em>n</em><em>s</em>
Answer:
<em><u>Glass that will sink</u></em>
- alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL
- potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL
<em><u>Glass that will float</u></em>
- soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL
- alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL
<em><u>Glass that will not sink or float</u></em>
- potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL
Explanation:
Density is the property of matter that states the ratio of the amount of matter, its mass, to the space occupied by it, its volume.
So, the mathematical expression for the density is:
By comparing the density of a material with the density of a liquid, you will be able to determine whether object will float, sink, or do neither when immersed in the liquid.
The greater the density of an object the more it will try to sink in the liquid.
As you must have experienced many times an inflatable ball (whose density is very low) will float in water, but a stone (whose denisty is greater) will sink in water.
The flotation condition may be summarized by:
- When the density of the object < density of the liquid, the object will float
- When the density of the object = density of the liquid: the object will neither float nor sink
- When the density of the object > density of the liquid: the object will sink.
<em><u>Glass that will sink</u></em>
- alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL, because 2.57 > 2.46.
- potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL, because 3.05 > 1.65.
<u><em>Glass that will float</em></u>
- soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL, because 2.27 < 2.62.
- alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL, because 2.26 < 2.34.
<em><u>Glass that will not sink or float</u></em>
- potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL, because 2.16 = 2.16
Answer:
Peptide bonds form from nucleophilic attack by an α‑carboxyl carbon atom on an electron pair of an α‑amino nitrogen atom of another amino acid.
Explanation:
Peptide bond is a form of covalent bond and it is Amide type that is formed between two molecules when carboxyl group react with one molecule of amino group to release molecule of water.The peptide bond are in form pseudo-double bond characteristic; rigid, planar, and stronger than a typical Carboxyl nitrogen single bond.
Peptide bonds form from nucleophilic attack by an α‑carboxyl carbon atom on an electron pair of an α‑amino nitrogen atom of another amino acid.