Answer: D
Reduced impact time will increase the impact force
Explanation: Collision occurs when two or more bodies collide and exert forces on each other within a short time.
If a body of mass M moving with a velocity V collide with another body, the kinetic energy of the body is equal to the work done by the body.
That is, K.E = 1/2mv^2 = F × s
Where workdone = Force × distance
Make F the subject of formula
Mv^2/2s = F
But V = distance s/time t
Substitute for V
Ms^2/2t^2s = F
Ms/2t^2 = F
From the equation above, we can deduce that F is inversely proportional to the square of time.
Therefore, the reduced impact time will increase the impact force
It contains protease which is the enzyme that breaks down protein
(a) 392 N/m
Hook's law states that:
(1)
where
F is the force exerted on the spring
k is the spring constant
is the stretching/compression of the spring
In this problem:
- The force exerted on the spring is equal to the weight of the block attached to the spring:

- The stretching of the spring is

Solving eq.(1) for k, we find the spring constant:

(b) 17.5 cm
If a block of m = 3.0 kg is attached to the spring, the new force applied is

And so, the stretch of the spring is

And since the initial lenght of the spring is

The final length will be

PM me the statements, and i'll answer it then.