Ammonia and table salt dissolves in polar solvents, so A is water,
CO2 and hexane are non-polar substances, so they are going to be dissolved in non-polar solvent, so I think it is going to be carbon tetrachloride
Answer is <span>A) A - water; B - carbon tetrachloride
Table salt does not dissolve in oil and CCl4, and Br2 is too active and it is going to react with NH3.</span>
I didn't know if you meant to the power of 14 but if you did here your answer:
3.64 x 10^-19
(you just multiply the frequency by Planck's constant= 6.63 × 10^–34)
Answer:
The final and initial concentration of the acid and it's conjugate base are approximately equal, that is we use the weak acid approximation.
Explanation:
The Henderson-Hasselbalch is used to calculate the pH of a buffer solution. It depends on the weak acid approximation.
Since the weak acid ionizes only to a small extent, then we can say that [HA] ≈ [HA]i
Where [HA] = final concentration of the acid and [HA]i = initial concentration of the acid.
It also follows that [A^-] ≈ [A^-]i where [A^-] and[A^-]i refer to final and initial concentrations of the conjugate base hence the answer above.
Answer:

Explanation:
Hello there!
In this case, according to the given chemical reaction:
2 Al + 3 Cl2 --> 2 AlCl3
Whereas there is a 2:3 mole ratio of aluminum to chlorine; it will be possible for us to calculate the required grams of aluminum by using the equality 22.4 L = 1 mol, the aforementioned mole ratio and the atomic mass of aluminum (27.0 g/mol) to obtain:

Regards!