Answer:
.
Explanation:
Lithium is in the first column of the periodic table, so it will have 1 valence electron.
Bromine is in the seventh column of the periodic table, so it will have seven valence electrons.
They must combine in a way to reach 8.
When combining elements to form compounds, the "crisscross method" is used. Above Li would be a charge of +1, and above Br would be a charge of -1.
Cross the 1 from the top of Li to the bottom of Br, and so there is 1 Br.
Cross the 1 from the top of Br to the bottom of Li, and so there is 1 Li.
It is not written BrLi because chemists decided to order them the other way. Technically speaking, it isn't wrong, but the positive charge is normally put on the left and the negative charge is normally put on the right.
To find for the oxidizing agent, first let us write the
half reactions of this complete chemical reaction:
Ca = Ca2+ + 2e- <span>
2 H+ + 2e- = H2</span>
The oxidizing agent
would be the substance of the element that is reduced. We know that an element
is reduced when an electron is added to it. In this case, the element being
reduced is H. Therefore the oxidizing agent is HNO3.
Answer:
<span>HNO3</span>
Answer:
29 L.
Explanation:
Hello!
In this case, considering that we are performing a conversion by which the time should be cancelled out to obtain liters, we first need to convert the seconds on bottom to hours and then the volume on top to liters, just a shown down below:

Which turns out 29 L with 2 significant figures.
Best regards!
Answer:
41.3kJ of heat is absorbed
Explanation:
Based in the reaction:
Fe₃O₄(s) + 4H₂(g) → 3Fe(s) + 4H₂O(g) ΔH = 151kJ
<em>1 mole of Fe3O4 reacts with 4 moles of H₂, 151kJ are absorbed.</em>
63.4g of Fe₃O₄ (Molar mass: 231.533g/mol) are:
63.4g Fe₃O₄ × (1mol / 231.533g) = <em>0.274moles of Fe₃O₄</em>
These are the moles of Fe₃O₄ that react. As 1 mole of Fe₃O₄ in reaction absorb 151kJ, 0.274moles absorb:
0.274moles of Fe₃O₄ × (151kJ / 1 mole Fe₃O₄) =
<h3>41.3kJ of heat is absorbed</h3>
<em />
<span>Although two centuries old, Dalton's atomic theory remains valid in modern chemical thought. 1) All matter is made of atoms. Atoms are indivisible and indestructible. 3) Compounds are formed by a combination of two or more different kinds of atoms.</span>