Hi there!
We can begin by calculating the time taken to reach its highest point (when the vertical velocity = 0).
Remember to break the velocity into its vertical and horizontal components.
Thus:
0 = vi - at
0 = 16sin(33°) - 9.8(t)
9.8t = 16sin(33°)
t = .889 sec
Find the max height by plugging this time into the equation:
Δd = vit + 1/2at²
Δd = (16sin(33°))(.889) + 1/2(-9.8)(.889)²
Solve:
Δd = 7.747 - 3.873 = 3.8744 m
Newton’s Thrid Law, which states that for every reaction there is an opposite reaction.
<u>Answer:</u>
<em>The correct equation for measuring the average microscopic weight for 3 isotopes is multiply the rate of abundance by each weight and add them.</em>
<u>Explanation:</u>
To calculate the average microscopic mass of element using weights and relative abundance we have to follow the following steps.
- Take the correct weight of each isotope (that will be in decimal form)
- Multiply the weight of each isotope by its abundance
- Add each of the results together.
<em>This gives the required average microscopic weight of the three isotopes.</em>
Answer:
She will make the jump.
Explanation:
We have equation of motion ,
, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
First we will consider horizontal motion of stunt women
Displacement = 77 m, Initial velocity = 28 cos 15 = 27.05 m/s, acceleration = 0
Substituting

So she will cover 77 m in 2.85 seconds
Now considering vertical motion, up direction as positive
Initial velocity = 28 sin 15 = 7.25 m/s, acceleration =acceleration due to gravity = -9.8
, time = 2.85
Substituting

So at time 2.85 stunt women is 10.11 m below from starting position, far side is 25 m lower. So she will be at higher position.
So she will make the jump.