

As we know that, Winnowing is used when the lighter particles is required to remove. Hence, in Case 2 the lighter part is removed and the remaining is needed.
10.0 J
if it was 10.01 it would be significant, but its 10.0 which makes it a whole number
According to Lawson's criterion, the outcome is determined by the product of ion density and confinement time because the temperature must be maintained for a sufficient confinement time and with a sufficient ion thickness to obtain a net gain of power from a fusion reaction.
<h3>What are
Lawson's criterion?</h3>
- The overall conditions that must be met in order to produce more energy than is required for plasma heating are usually expressed in terms of the product of ion density and confinement time, a condition known as Lawson's criterion.
- In nuclear fusion devices, confinement time is defined as the amount of time the plasma is kept at a temperature above the critical ignition temperature.
- Even at temperatures high enough to overcome the coulomb barrier to nuclear fusion, a critical density of ions must be maintained in order to achieve a net yield of energy from the reaction.
- Because the density required for a net energy yield is correlated with the confinement time for hot plasma, the minimum condition for a productive fusion reaction is typically stated in terms of the product of ion density and confinement time, which is known as Lawson's criterion.
To learn more about Lawson's criterion, refer:
brainly.com/question/28303495
#SPJ4
6 meters is left because you subtract 12 meters from 6
Answer:
C.) vector C
Explanation:
From the graph provided:
Four vectors are present :
Vectors a, b, c and d.
The x-component of the vector is its magnitude along the x-axis.
Taking the coordinate of each vector:
Vector a = (1,4) : length of x- component = 1
Vector b = (1, 1) : length of x- component = 1
Vector c = (4, -4) : length of x- component = 4
Vector d = (-3, 4) : length of x- component = - 3
Therefore, vector c has an x-component length of 4