molar concentration of AgNO₃ solution = 0.118 mole/L
Explanation:
Because we have the volume of the solution and there is no information about the density of the solution I will asume that you ask for the molar concentration.
number of moles = mass / molecular weight
number of moles of AgNO₃ = 10 / 170 = 0.0588
molar concentration = number of moles / volume (L)
molar concentration of AgNO₃ solution = 0.0588 / 0.5
molar concentration of AgNO₃ solution = 0.118 mole/L
Learn more about:
molar concentration
brainly.com/question/1286583
#learnwithBrainly
Answer:hemoglobin that has a high affinity for oxygen
Explanation:
Haemoglobin is the oxygen carrying pigment in blood. It performs this function because of the presence of iron at the center of the haemoglobin which coordinates reversibly with oxygen thereby aiding delivery of oxygen to cells. At high altitudes where air is thinner and the partial pressure of oxygen is lower than sea level, haemoglobin must develop a greater affinity for oxygen in order to carry the scarce oxygen to cells.
Answer:
Explanation:
AgCl ⇄ Ag⁺ + Cl⁻
m m m
If x mole of AgCl be dissolved in one litre .
[ Ag⁺ ] [ Cl⁻ ] = 1.6 x 10⁻¹⁰
m² = 1.6 x 10⁻¹⁰
m = 1.26 x 10⁻⁵ moles
So solubility of AgCl is 1.26 x 10⁻⁵ moles / L
Explanation:
bbdjsjakkakajdjehejkskssjsjjanzbh
please report me :/
If you start with 0.30 m Mn₂ , at 12.5 pH, free Mn₂ concentration be equal to 4.6 x 10⁻¹¹ m
Initial molarity of Mn₂ = 0.30 M
Final molarity of Mn₂ = 4.6 x 10⁻¹¹
pH = ?
Ksp [Mn(OH)₂] = 4.6 x 10⁻¹⁴ (standard value)
Write the ionic equation
Mn(OH)₂ → Mn⁺² + 2OH⁻
[Mn⁺²] = 4.6 x 10⁻¹¹
We will calculate the concentration of OH⁻ by using Ksp expression
Ksp = [Mn⁺²][OH-]²
[Mn⁺²][OH⁻]² = 4.6 x 10⁻¹⁴
[OH⁻]² = 4.6 x 10⁻¹⁴ / 4.6 x 10⁻¹¹
[OH⁻]² = 10⁻³
[OH⁻] = (10⁻³)¹⁽²
[OH⁻] = 0.0316 M
Calculate the pOH
pOH = -log [OH⁻]
pOH = -log [0.0316]
pOH = 1.5
Now calculate pH
pH = 14 - pOH
pH = 14 - 1.5
pH = 12.5
You can also learn about molarity from the following question:
brainly.com/question/14782315
#SPJ4