A shopping cart that starts from rest, is accelerated for 4 s, moves at constant velocity for 4 s, and is decelerated for 4s until returning to rest, has an average acceleration of 0 m/s².
A shopper is pushing a cart down a grocery store aisle. The movement of the cart is:
- It starts from rest.
- From t = 0 s to t = 4.0 s it is accelerated with a constant force.
- From t = 4 s to t = 8.0 s it receives just enough force to balance the friction on the cart.
- From t = 8 s to t = 12 s it is decelerated until it comes to rest.
All in all, at the initial time (t = 0 s), the velocity is 0 m/s (rest) and at the final time (t = 12 s) the velocity is 0 m/s as well (rest). The average acceleration in that period is:

A shopping cart that starts from rest, is accelerated for 4 s, moves at constant velocity for 4 s, and is decelerated for 4s until returning to rest, has an average acceleration of 0 m/s².
Learn more: brainly.com/question/16274121
The answer is 2.63m/s^2! You use the formula F=ma, 112 = 42.6(a), a= 2.63m/s^2.
Explanation:
Newton's second law says that when a constant force acts on a massive body, it causes it to accelerate.
Answer:
An investigation is made to determine the performance of simple thin airfoils in the slightly supersonic flow region with the aid of the nonlinear transonic theory first developed by von Kármán[1]. Expressions for the pressure coefficient across an oblique shock and a Prandtl-Meyer expansion are developed in terms of a transonic similarity parameter. Aerodynamic coefficients are calculated in similarity form for the flat plate and asymmetric wedge airfoils, and curves are plotted. Sample curves for a flat plate and a specific asymmetric wedge are plotted on the usual coordinate grid of Cl, Cd,andCmc/4versus angle of attack and Cl versus Mach Number to illustrate the apparent features of nonlinear flow.
Explanation:
The density of seawater plays a vital role in causing ocean currents and circulating heat because of the fact that dense water sinks below less dense. long story short, seawater is the problem because its denser than pure water.