Answer:
Climate, atmosphere, and land
Explanation:
Some of the data collected include air chemistry, temperature, precipitation, cloud cover, and wind speed. Instruments carried on balloons and wind profiling radar provide observations from the surface to more than 10 miles high.
Time t=2.4 minutes=2.4×60=144 seconds
distance s=1.2 miles=1.2×1609=1930.8 meters
speed v=s/t=1930.8÷144=[tex] \frac{1930.8}{144} = \frac{160.9}{12} =[/13.408m/s ~nearly]
Answer:
unequal heating and cooling of the landmass.
For i: 33mL
For ii: 87-88mL
For iii:22.3mL
Answer:
It is 20. g HF
Explanation:
H2 + F2 ==> 2HF ... balanced equation
Since the question is asking us to find the mass of product formed, we will want to first convert the molecules of H2 into moles of H2 (we could do this at the end of the calculations, but it's just as easy to do it now).
moles of H2 present (using Avogadro's number):
3.0x1023 molecules H2 x 1 mole H2/6.02x1023 molecules = 0.498 moles H2
From the balanced equation, we see that 1 mole H2 produces 2 moles HF. Therefore, we can now find the theoretical mass of HF produced from 0.498 moles H2:
0.498 moles H2 x 2 moles HF/1 mol H2 = 0.996 moles HF formed.
The molar mass of HF = 20.01 g/mole, thus...
0.996 moles HF x 20.01 g/mole = 19.93 g HF = 20. g HF formed (to 2 significant figures)