Answer:
Sarah is right
Explanation:
This is an exercise that differentiates between scalars and vectors.
A scalar is a number, instead a vector is a number that represents the module in addition to direction and sense.
In this case, the distance (scalar) traveled is a number, which is why it is worth 1500m, but the displacement is a vector and since the point where it leaves is the same point where the vector's modulus arrives is zero, so the DISPLACEMENT VECTOR is zero
consequently Sarah is right
Here mass of the iron pan is given as 1 kg
now let say its specific heat capacity is given as "s"
also its temperature rise is given from 20 degree C to 250 degree C
so heat required to change its temperature will be given as



now if we give same amount of heat to another pan of greater specific heat
so let say the specific heat of another pan is s'
now the increase in temperature of another pan will be given as


now we have

now as we know that s' is more than s so the ratio of s and s' will be less than 1
And hence here we can say that change in temperature of second pan will be less than 230 degree C which shows that final temperature of second pan will reach to lower temperature
So correct answer is
<u>A) The second pan would reach a lower temperature.</u>
For an inelastic collision where coefficient of restitution,e, is equal to 0, the momentum is conserved but not the kinetic energy. So, there is addition or elimination of kinetic energy.
On the otherhand, when e = 1, like for an elastic collision, kinetic energy and momentum is conserved. Thus, the system's kinetic energy is unchanged.
It's impossible to describe WHERE a place is without mentioning ANOTHER place.
... Across the street from -- the bank.
... Next door to -- my house.
... 30 miles west of -- Chicago.
... Up above -- the tree.
... Two days ride out of -- Tulsa.
... Halfway home from -- school.
... Twice as far from Earth as -- the moon is.
... The first seat in -- the second row.
... Behind -- the dog's left ear.
... At the bottom of -- the pool.
... On the tip of -- my tongue.
... In the front seat of -- the car.
... I saw you in -- my dream.
... You're always on -- my mind.
The question is trying to get you to realize that to get from a reference point to a certain position, you have to know
How far
and
In what direction.