Answer:
The distance is 1.69 m.
Explanation:
Given that,
First charge 
Second charge 
Distance = 3.25 m
We need to calculate the distance
Using formula of electric field





Put the value into the formula





Hence, The distance is 1.69 m.
Answer:
A)
0.395 m
B)
2.4 m/s
Explanation:
A)
= mass of the cart = 1.4 kg
= spring constant of the spring = 50 Nm⁻¹
= initial position of spring from equilibrium position = 0.21 m
= initial speed of the cart = 2.0 ms⁻¹
= amplitude of the oscillation = ?
Using conservation of energy
Final spring energy = initial kinetic energy + initial spring energy

B)
= mass of the cart = 1.4 kg
= spring constant of the spring = 50 Nm⁻¹
= amplitude of the oscillation = 0.395 m
= maximum speed at the equilibrium position
Using conservation of energy
Kinetic energy at equilibrium position = maximum spring potential energy at extreme stretch of the spring

Answer:
I=0.0361 kg.m^2
Explanation:
Torque is the rotational equivalent of a force
Torque= perpendicular distance r X Force F
Torque T = I(moment of inertia) X α (angular acceleration)
T= Iα
r= 0.0285m
F= 1.9 x 10^3
T=0.0285 x 1.9 x 10^3
T= 54.15Nm
I=T/α
I=54.15/150
I=0.361 kg.m^2
Answer:
x = 0.237
y = 0.0789
Explanation:
Vector with direction 18.4° and magnitude 0.250 has x and y components of:
x = 0.250 cos 18.4°
x = 0.237
y = 0.250 sin 18.4°
y = 0.0789
Answer:
<u>The pendulum bob swing past the mean position because:</u>
When a pendulum's bob is accelerating at its extreme position its velocity is zero. Due to the restoring toque the bob starts to accelerates towards its mean postion. The maximum acceleration of the pendulum's bob is
and the the acceleration decreases as
towards the mean position.
The acceleration at the mean position becomes zero but the velocity remains maximum. Hence the bob continues to move and does not stops.Thus it can summarised as the force decreases ,acceleration decreases and velocity increases at slow rate.