Ignoring air resistance, the Kinetic energy before hitting the ground will be equal to the potential energy of the Piton at the top of the rock.
So we have 1/2 MV^2 = MGH
V^2 = 2GH
V = âš2GH
V = âš( 2 * 9.8 * 325)
V = âš 6370
V = 79.81 m/s
Answer:
160 meters I think
Explanation:
if I'm wrong I'm a troop juSt trying to get points to ask a couple of questions
-- She went up for 0.4 sec and down for 0.4 sec.
-- The vertical distance traveled in gravity during ' t ' seconds is
D = (1/2) x (g) x (t)²
= (1/2) (9.8 m/s²) (0.4 sec)²
= (4.9 m/s²) x (0.16 s²)
= 0.784 meter ( B )
<span>So we want to know what will happen when the fast moving car that is making loud noise that is initially approaching the person, passes the person and starts to move away. So Doppler effect is a phenomenon where when the source of a sound is approaching a person, the person hears the sound as higher than if the source was standing still with respect to the person because the wavelength is getting shorter, and as the source is moving avay from the person the sound is getting deeper because the wavelength is getting longer. So the correct answer is A. </span>