Explanation:
This happens because the gas inside tend to expand because its temperature gets higher.
This is why the balloon that is put in a freezer for too long tend to gets smaller, because the gas temperature that is inside the balloon decreases.
(you can try it at home)
It is related to the temperature of the gas.
Answer:
a. 4 m/s b. 0.2 V
Explanation:
a. Find the flow rate through a 3.00-cm-diameter pipe if the Hall voltage is 60.0 mV.
The hall voltage V = vBd where v = flow-rate, B = magnetic field strength = 0.500 T and d = diameter of pipe = 3.00 cm = 0.03 m
Since V = vBd
v = V/Bd given that V = 60.0 mV = 0.060 V, substituting the values of the other variables, we have
v = 0.060 V/(0.500 T × 0.03 m)
v = 0.060 V/(0.015 Tm)
v = 4 m/s
b. What would the Hall voltage be for the same flow rate through a 10.0-cm-diameter pipe with the same field applied?
Since the hall voltage, V = vBd and v = flow-rate = 4 m/s, B = magnetic field strength = 0.500 T and d' = diameter of pipe = 10.0 cm = 0.10 m
Substituting the variables into the equation, we have
V = vBd
V = 4 m/s × 0.500 T × 0.10 m
V = 0.2 V
Answer: 2.5 m/s and 6.25 m
Explanation:
u = 0
a = 0.5 m/s²
t = 5 s
v = u + at
= 0 + 0.5 × 5
= <u>2.5 m/s</u>
s = ut + 1/2 at²
= 1/2 × 2.5 × 5
=<u> 6.25 m</u>