1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ollegr [7]
3 years ago
8

What equation describes conservation of charge?

Physics
1 answer:
Phantasy [73]3 years ago
6 0

Answer:

The equation which describes conservation of charge is Q_{initial} - Q_{final } = 0

Explanation:

The law of conservation charge states that for an isolated system that sum of initial charges is equal to sum of final charges, that is the total charge is conserved.

let the sum of initial charges = Q_{initial}

let the sum of the final charges = Q_{final}

Q_{initial } = Q_{final}\\\\Q_{initial } - Q_{final} = 0

Therefore, the equation which describes conservation of charge is Q_{initial} - Q_{final } = 0

You might be interested in
If a ball that is 10 meters above the ground is thrown horizontally at 5.51 meters per second. a. how long will it take for the
GalinKa [24]

Answer:

a. t = 1.43 s

b. d = 7.88 m

Explanation:

a. The time of flight can be found using the following equation:

y_{f} = y_{0} + v_{0_{y}}t - \frac{1}{2}gt^{2}

Where:

y_{f}: is the final height = -10 m

y_{0}: is the initial height = 0

v_{0_{y}}: is the initial speed in the vertical direction = 0

g: is the acceleration due to gravity = 9.81 m/s²

By solving the above equation for "t" we have:

t = \sqrt{\frac{2y_{f}}{g}} = \sqrt{\frac{2*10 m}{9.81 m/s^{2}}} = 1.43 s

Hence, the ball will hit the ground in 1.43 s.

b. The distance in the horizontal direction can be found as follows:

x_{f} = x_{0} + v_{0}t + \frac{1}{2}at^{2}

Where:

x₀: is the initial position in the horizontal direction = 0

a: is the acceleration in the horizontal direction = 0 (it is moving at constant speed)

x_{f} = 5.51 m/s*1.43 s = 7.88 m

Therefore, the ball will travel 7.88 m before it hits the ground.

I hope it helps you!

4 0
2 years ago
PLEASE HELP
blagie [28]
Assuming Adam is on earth g= 9.8 m/s and m= weight/ gravity = 667/9.8 = 68 kg
8 0
3 years ago
Physics double pivot question​
andriy [413]

Explanation:

Assuming the wall is frictionless, there are four forces acting on the ladder.

Weight pulling down at the center of the ladder (mg).

Reaction force pushing to the left at the wall (Rw).

Reaction force pushing up at the foot of the ladder (Rf).

Friction force pushing to the right at the foot of the ladder (Ff).

(a) Calculate the reaction force at the wall.

Take the sum of the moments about the foot of the ladder.

∑τ = Iα

Rw (3.0 sin 60°) − mg (1.5 cos 60°) = 0

Rw (3.0 sin 60°) = mg (1.5 cos 60°)

Rw = mg / (2 tan 60°)

Rw = (10 kg) (9.8 m/s²) / (2√3)

Rw = 28 N

(b) State the friction at the foot of the ladder.

Take the sum of the forces in the x direction.

∑F = ma

Ff − Rw = 0

Ff = Rw

Ff = 28 N

(c) State the reaction at the foot of the ladder.

Take the sum of the forces in the y direction.

∑F = ma

Rf − mg = 0

Rf = mg

Rf = 98 N

3 0
3 years ago
A car traveling with constant speed travels 150 km in 7200s. What is the speed of the car?
LiRa [457]
Speed= distance/time
Speed= 150000m/7200s=20.83m/s(cor.to.2d.p.)
7 0
3 years ago
A 51.0 kg crate, starting from rest, is pulled across a floor with a constant horizontal force of 225 N. For the first 10.0 m th
shepuryov [24]

Answer:

The final speed of the crate is 12.07 m/s.

Explanation:

For the first 10.0 meters, the only force acting on the crate is 225 N, so we can calculate the acceleration as follows:

F = ma

a = \frac{F}{m} = \frac{225 N}{51.0 kg} = 4.41 m/s^{2}

Now, we can calculate the final speed of the crate at the end of 10.0 m:

v_{f}^{2} = v_{0}^{2} + 2ad_{1}                  

v_{f} = \sqrt{0 + 2*4.41 m/s^{2}*10.0 m} = 9.39 m/s    

For the next 10.5 meters we have frictional force:

F - F_{\mu} = ma

F - \mu mg = ma

So, the acceleration is:

a = \frac{F - \mu mg}{m} = \frac{225 N - 0.17*51.0 kg*9.81 m/s^{2}}{51.0 kg} = 2.74 m/s^{2}

The final speed of the crate at the end of 10.0 m will be the initial speed of the following 10.5 meters, so:

v_{f}^{2} = v_{0}^{2} + 2ad_{2}  

v_{f} = \sqrt{(9.39 m/s)^{2} + 2*2.74 m/s^{2}*10.5 m} = 12.07 m/s  

Therefore, the final speed of the crate after being pulled these 20.5 meters is 12.07 m/s.  

I hope it helps you!                              

7 0
3 years ago
Other questions:
  • A mover hoists a 50 kg box from the ground to a height of 2 m. What was the change in the box's energy
    11·1 answer
  • An engine takes in 200 J of heat, expels 40 J of heat, and does 160 J of work. What is the efficiency of the engine?
    5·1 answer
  • Which form or radiation has the greater frequency?<br> UV radiation or violet light?
    10·2 answers
  • The blank represent the different forms of electromagnetic radiation
    6·1 answer
  • A machinist needs to remove a tight fitting pin of material A from a hole in a block made of material B. The machinist heats bot
    15·1 answer
  • A remote control car is traveling at a velocity of 0.50 m/s when it hits a wall and comes to a stop in 0.050 seconds. What is th
    13·1 answer
  • A solid nonconducting sphere of radius R carries a charge Q distributed uniformly throughout its volume. At a certain distance r
    6·1 answer
  • Drawing a ray diagram for an object far from convex lens requires how many rays?
    14·1 answer
  • Two 90.0-kilogram people are separated by 3.00 meters. What is the magnitude of the gravitational force that one person exerts o
    13·1 answer
  • Set local ground level to 700 ft, and record the inches of mercury.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!