Our year would now be 2.8 times longer, we would also be receiving only 1/4 of the energy from the sun that we currently do. This means that we’d now be out beyond the orbit of Mars and right at the edge of the asteroid belt, and things would rapidly get very cold with temperatures expected to drop by around 50 degrees Celsius on average, and that’s with our current atmospheric composition which would not be stable in the new conditions. And also, any living thing on earth would die.
Answer:
v = 5.24[m/s]
Explanation:
Este problema se puede resolver por medio del principio de la conservación de la energía, donde la energía potencial es igual a la energía cinética. Es decir a medida que el carrito desciende su energía potencial disminuye, pero su energía cinética aumenta.

Donde:

Ahora reemplazando:
![\frac{1}{2} *m*v^{2}=m*g*h\\\\0.5*v^{2}=9.81*1.4\\v=\sqrt{\frac{9.81*1.4}{0.5} } \\\\v=5.24[m/s]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%3Dm%2Ag%2Ah%5C%5C%5C%5C0.5%2Av%5E%7B2%7D%3D9.81%2A1.4%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B9.81%2A1.4%7D%7B0.5%7D%20%7D%20%20%20%5C%5C%5C%5Cv%3D5.24%5Bm%2Fs%5D)
Pressure is the amount of force per unit area. In formula it
is,
P = F ÷ A
P = 7000 N ÷ 0.4 m2
P = 17,500 N/m2
The amount of pressure the truck exerts on the piston is
17,500 N/m2
<u>Answer:</u>
Cannonball will be in flight before it hits the ground for 2.02 seconds
<u>Explanation:</u>
Initial height from ground = 20 meter.
We have equation of motion ,
, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
In this the velocity of body in vertical direction = 0 m/s, acceleration = 9.8
, we need to calculate time when s = 20 meter.
Substituting

So it will take 2.02 seconds to reach ground.
Answer:
The downwards acceleration is 3.53 m/s2.
Explanation:
Let the true weight is m g.
The reading of the balance, R = 0.64 mg
Let the acceleration is a.
As the apparent weight is less than the true weight so the elevator goes down wards with some acceleration.
Use Newton's second law
m g - R = m a
m g - 0.64 m g = m a
0.36 g = a
a = 3.53 m/s2