Gases
liquids
plasma
solids
condensates <span />
Answer:
108.43 grams KNO₃
Explanation:
To solve this problem we use the formula:
Where
- ΔT is the temperature difference (14.5 K)
- Kf is the cryoscopic constant (1.86 K·m⁻¹)
- b is the molality of the solution (moles KNO₃ per kg of water)
- and<em> i</em> is the van't Hoff factor (2 for KNO₃)
We <u>solve for b</u>:
- 14.5 K = 1.86 K·m⁻¹ * b * 2
Using the given volume of water and its density (aprx. 1 g/mL) we <u>calculate the necessary moles of KNO₃</u>:
- 275 mL water ≅ 275 g water
- moles KNO₃ = molality * kg water = 3.90 * 0.275
- moles KNO₃ = 1.0725 moles KNO₃
Finally we <u>convert KNO₃ moles to grams</u>, using its molecular weight:
- 1.0725 moles KNO₃ * 101.103 g/mol = 108.43 grams KNO₃
A polymer is a really long chain of smaller molecules (monomers). It's similar to a chain of paper clips because all of the little monomers will attach to each other, forming a long strain.
<span> Greenhouse gases were not historically present in the atmosphere.</span>
In Grignard reaction, Biphenyl and benzene are common side products which are removed during trituration.
In organic chemistry, a reaction in which the Grignard reagents or organometallic substances are added to organic compounds such as aldehydes and ketones to form alcohol is known as Grignard reaction.
These Grignard reagents are magnesium halides of alkyl, vinyl or allyl, which react with a carbonyl group to form alcohols.
During this reaction, primary, secondary and tertiary alcohols are formed.
While Biphenyl and benzene are common side products.
These are removed during trituration process in which cold petroleum ether is added to dissolve the biphenyl and benzene side products
If you need to learn more about Biphenyl and benzene click here:
brainly.com/question/4336669