Answer:
<h3>homeostasis</h3>
•the maintenance of a stable internal environment
<u><em>Hope </em><em>this</em><em> helps</em><em> </em><em>:</em><em>)</em></u>
Answer:
2NaOH + CO2 -> Na2CO3 + H2O
1) Find the moles of each substance
2) Determine the limitting reagent
∴ Carbon dioxide is limitting as it has a smaller value.
3) multiply the limiting reagent by the mole ratio of unknown over known
n(H2O ) = 0.3976369007 × 1/2
= 0.1988184504 moles
4) Multiply the number of moles by the molar mass of the substance.
m = 0.1988184504 × (1.008 × 2 + 16.00)
= 0.1988184504 × 18.016
= 3.581913202 g
Explanation:
Answer:
5.96 g/cm^3
Explanation:
Corner atom = 1/8
Atoms in center = 1
Atoms in face of the cube= 1/2
Molar mass of V = 50.94 g/mol <em>(from period table)</em>
1 mole = 6.02x10^23
<em>In BCC unit cell:</em>
(8 x 1/8)+ 1=2 per 1 unit cell
<em>Mass: </em>2(50.94g)/6.02x10^23 = 1.69x10^-22 g/unit cell
305pm=(305x10^-12m÷10^-2m) x (1mL÷1cm^3)
= 2.837 x 10^-23 mL
<em>1pm=10^-12m</em>
<em>1cm=10^-2m</em>
<em>1mL=1cm^3</em>
<em></em>
density=mass/volume
density of V = 1.69x10^-22g÷2.837x10^-23mL
=5.957g/mL
=5.96g/cm^3
Answer:
a) HNO3 -> H+ + NO3- disassociation of Nitric Acid; to yield a Nitrate ion and a Proton, H+, or as a Hydronium ion H3O+
b) H2S04 -> Disassociation of Sulfuric Acid; simple way- 2H+ + SO4- -
c) H2S hydrogen sulphide in water is an acid; thus H+ HS- disassociation.
d) NaOH -> dissociation of Na+ + OH-; this is complete; sodium hydroxide is deliquescent, meaning it will draw water - EVEN from the air! Strong Base
e) Na2CO3 -> 2Na+ CO3- - Ionization of sodium carbonate - a salt
f) Na2S04 -> 2Na+ + SO4 - - ionization of sodium sulphate - a salt
g) NaCl -> Na+ + Cl- ionization of the salt, Sodium Chloride
Explanation:
Salts ionize at different rates; acids or bases dissociate; these are mostly strong acids and NaOH, a strong base.
Answer:
Proteins and nucleic acids
Explanation:
Nitrogen compounds in animals that are no longer of use, or are in access are excreted from the animals body, and are thus called nitrogenous waste. These nitrogenous waste can be excreted in three different ways.
1. Ammonia
2. Urea
3. Uric acid