Answer:
the difference in pressure between the inside and outside of the droplets is 538 Pa
Explanation:
given data
temperature = 68 °F
average diameter = 200 µm
to find out
what is the difference in pressure between the inside and outside of the droplets
solution
we know here surface tension of carbon tetra chloride at 68 °F is get from table 1.6 physical properties of liquid that is
σ = 2.69 ×
N/m
so average radius =
= 100 µm = 100 ×
m
now here we know relation between pressure difference and surface tension
so we can derive difference pressure as
2π×σ×r = Δp×π×r² .....................1
here r is radius and Δp pressure difference and σ surface tension
Δp =
put here value
Δp =
Δp = 538
so the difference in pressure between the inside and outside of the droplets is 538 Pa
Answer:
Option A
Explanation:
Alloys are metal compounds with two or more metals or non metals to create new compounds that exhibit superior structural properties. Alloys have high level of hardness that resists deformation thereby making it less ductile compared to polymers. This is due to the varying difference in the chemical and physical characteristics of the constituent metals in the alloy.
Answer:
<h2>False </h2>
Explanation:
The noun form of organize is just adding letter r
Answer:
Step 1 of 3
Case A:
AISI 1018 CD steel,
Fillet radius at wall=0.1 in,
Diameter of bar
From table deterministic ASTM minimum tensile and yield strengths for some hot rolled and cold drawn steels for 1018 CD steel
Tensile strength
Yield strength
The cross section at A experiences maximum bending moment at wall and constant torsion throughout the length. Due to reasonably high length to diameter ratio transverse shear will be very small compared to bending and torsion.
At the critical stress elements on the top and bottom surfaces transverse shear is zero
Explanation:
See the next steps in the attached image