Answer:
Other possible causes include: Loose, Dirty or Disconnected Spark Plug in Your Lawn Mower: Check it out, clean off debris, re-connect and tighten. Dirty Air Filter: Clean or replace. Fuel Not Reaching the Engine: Tap the side of the carburetor to help the flow of gas.
Answer:
At a retirement party, a coworker described Terry as dedicated, hardworking, and dependable. He also said that Terry was a great leader, knew the computer system, and kept the company's finances in order
Answer: The overhead percentage is 7.7%.
Explanation:
We call overhead, to all those bytes that are delivered to the physical layer, that don't carry real data.
We are told that we have 700 bytes of application data, so all the other bytes are simply overhead, i.e. , 58 bytes composed by the transport layer header, the network layer header, the 14 byte header at the data link layer and the 4 byte trailer at the data link layer.
So, in order to assess the overhead percentage, we divide the overhead bytes between the total quantity of bytes sent to the physical layer, as follows:
OH % = (58 / 758) * 100 = 7.7 %
Answer:
When the uneven burning of the fuel takes place due to the incorrect air/fuel mixture inside the engine cylinder, a knocking sound is observed. This is called as the engine knocking.
Explanation:
When the uneven burning of the fuel takes place due to the incorrect air/fuel mixture inside the engine cylinder, a knocking sound is observed. This is called as the engine knocking.
The engine knock problem can be caused due to the following reason
a) When the octane rating of the fuel used is low.
b) The deposition of the carbon around the cylinder walls takes place.
c) The spark plug used in the vehicle is not correct.
Answer:
, 
Explanation:
The drag force is equal to:

Where
is the drag coefficient and
is the frontal area, respectively. The work loss due to drag forces is:

The reduction on amount of fuel is associated with the reduction in work loss:

Where
and
are the original and the reduced frontal areas, respectively.

The change is work loss in a year is:
![\Delta W = (0.3)\cdot \left(\frac{1}{2}\right)\cdot (1.20\,\frac{kg}{m^{3}})\cdot (27.778\,\frac{m}{s})^{2}\cdot [(1.85\,m)\cdot (1.75\,m) - (1.50\,m)\cdot (1.75\,m)]\cdot (25\times 10^{6}\,m)](https://tex.z-dn.net/?f=%5CDelta%20W%20%3D%20%280.3%29%5Ccdot%20%5Cleft%28%5Cfrac%7B1%7D%7B2%7D%5Cright%29%5Ccdot%20%281.20%5C%2C%5Cfrac%7Bkg%7D%7Bm%5E%7B3%7D%7D%29%5Ccdot%20%2827.778%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%29%5E%7B2%7D%5Ccdot%20%5B%281.85%5C%2Cm%29%5Ccdot%20%281.75%5C%2Cm%29%20-%20%281.50%5C%2Cm%29%5Ccdot%20%281.75%5C%2Cm%29%5D%5Ccdot%20%2825%5Ctimes%2010%5E%7B6%7D%5C%2Cm%29)


The change in chemical energy from gasoline is:



The changes in gasoline consumption is:





Lastly, the money saved is:

